

 eProsima Fast DDS Statistics Backend Documentation

[image: eProsima]
 [http://www.eprosima.com/]
Description

eProsima Fast DDS Statistics Backend is a C++ library to collect data from the Fast DDS Statistics module and
generate statistical information to be used by applications.

This database-like tool enhances the monitoring of the health of Fast DDS entities. Additionally, it offers a
useful depiction of the Fast DDS system in a graph-like format. This visualization aids in understanding the
system’s structure and behavior in an accessible manner.

Warning

To monitor a DDS network deployed using the Fast DDS library, it must be compiled with statistics and
the statistics module must be explicitly enabled. See Statistics Module DDS Layer [https://fast-dds.docs.eprosima.com/en/latest/fastdds/statistics/dds_layer/statistics_dds_layer.html]
for more details.

Warning

If Fast DDS has been compiled with statistics and they are explicitly enabled and statistical data are not correctly
received, only few data arrive or even none, configure the Fast DDS endpoints publishing statistics data with a less
restrictive memory constraints.
Please check the following
documentation [https://fast-dds.docs.eprosima.com/en/latest/fastdds/statistics/dds_layer/troubleshooting.html#troubleshooting]
for more details on how to do this.

Contacts and Commercial support

Find more about us at eProsima’s webpage [https://eprosima.com/].

Support available at:

	Email: support@eprosima.com

	Phone: +34 91 804 34 48

Contributing to the documentation

Fast DDS Statistics Backend Documentation is an open source project, and as such all contributions, both in the form of
feedback and content generation, are most welcomed.
To make such contributions, please refer to the
Contribution Guidelines [https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md] hosted in our GitHub
repository.

Structure of the documentation

This documentation is organized into the sections below.

	Installation Manual

	Fast DDS Statistics Backend

	Release Notes

 eProsima Fast DDS Statistics Backend Documentation

[image: eProsima]
 [http://www.eprosima.com/]
Description

eProsima Fast DDS Statistics Backend is a C++ library to collect data from the Fast DDS Statistics module and
generate statistical information to be used by applications.

This database-like tool enhances the monitoring of the health of Fast DDS entities. Additionally, it offers a
useful depiction of the Fast DDS system in a graph-like format. This visualization aids in understanding the
system’s structure and behavior in an accessible manner.

Warning

To monitor a DDS network deployed using the Fast DDS library, it must be compiled with statistics and
the statistics module must be explicitly enabled. See Statistics Module DDS Layer [https://fast-dds.docs.eprosima.com/en/latest/fastdds/statistics/dds_layer/statistics_dds_layer.html]
for more details.

Warning

If Fast DDS has been compiled with statistics and they are explicitly enabled and statistical data are not correctly
received, only few data arrive or even none, configure the Fast DDS endpoints publishing statistics data with a less
restrictive memory constraints.
Please check the following
documentation [https://fast-dds.docs.eprosima.com/en/latest/fastdds/statistics/dds_layer/troubleshooting.html#troubleshooting]
for more details on how to do this.

Contacts and Commercial support

Find more about us at eProsima’s webpage [https://eprosima.com/].

Support available at:

	Email: support@eprosima.com

	Phone: +34 91 804 34 48

Contributing to the documentation

Fast DDS Statistics Backend Documentation is an open source project, and as such all contributions, both in the form of
feedback and content generation, are most welcomed.
To make such contributions, please refer to the
Contribution Guidelines [https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md] hosted in our GitHub
repository.

Structure of the documentation

This documentation is organized into the sections below.

	Installation Manual

	Fast DDS Statistics Backend

	Release Notes

1. Linux installation from sources

The instructions for installing the eProsima Fast DDS Statistics Backend from sources are provided in this page.
It is organized as follows:

	Fast DDS Statistics Backend installation

	Requirements

	Dependencies

	Colcon installation

	CMake installation

1.1. Fast DDS Statistics Backend installation

This section describes the instructions for installing eProsima Fast DDS Statistics Backend
in a Linux environment from sources.
First of all, the Requirements and Dependencies
detailed below need to be met.
Afterwards, the user can choose whether to follow either the colcon
or the CMake installation instructions.

1.1.1. Requirements

The installation of eProsima Fast DDS Statistics Backend in a Linux environment from sources
requires the following tools to be installed in the system:

	CMake, g++, pip3, wget and git

	Gtest [optional]

1.1.1.1. CMake, g++, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS Statistics Backend and its dependencies
from command line.
Install CMake [https://cmake.org], g++ [https://gcc.gnu.org/], pip3 [https://docs.python.org/3/installing/index.html], wget [https://www.gnu.org/software/wget/] and git [https://git-scm.com/] using the package manager of the appropriate
Linux distribution. For example, on Ubuntu use the command:

sudo apt install cmake g++ python3-pip wget git

1.1.1.2. Gtest

Gtest is a unit testing library for C++.
By default, eProsima Fast DDS Statistics Backend does not compile tests.
It is possible to activate them with the opportune
CMake configuration options [https://cmake.org/cmake/help/v3.6/manual/cmake.1.html#options]
when calling colcon [https://colcon.readthedocs.io/en/released/] or CMake [https://cmake.org].
For more details, please refer to the CMake options section.
For a detailed description of the Gtest installation process, please refer to the
Gtest Installation Guide [https://github.com/google/googletest].

Note

eProsima Fast DDS Statistics Backend depends on Gtest release-1.10.0 or later.

1.1.2. Dependencies

eProsima Fast DDS Statistics Backend has the following dependencies in a Linux environment:

	eProsima Fast DDS

1.1.2.1. eProsima Fast DDS

Please, refer to the eProsima Fast DDS [https://fast-dds.docs.eprosima.com/en/latest/installation/binaries/binaries_linux.html#linux-binaries]
installation documentation to learn the installing procedure

1.1.3. Colcon installation

colcon [https://colcon.readthedocs.io/en/released/] is a command line tool based on CMake [https://cmake.org] aimed at building sets of software packages.
This section explains how to use it to compile eProsima Fast DDS Statistics Backend and its dependencies.

	Install the ROS 2 development tools (colcon [https://colcon.readthedocs.io/en/released/] and vcstool [https://pypi.org/project/vcstool/]) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note

If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

	Create a Fast-DDS-statistics-backend directory and download the repos file that will be used to install
eProsima Fast DDS Statistics Backend and its dependencies:

mkdir ~/Fast-DDS-statistics-backend
cd ~/Fast-DDS-statistics-backend
wget https://raw.githubusercontent.com/eProsima/Fast-DDS-statistics-backend/master/fastdds_statistics_backend.repos
mkdir src
vcs import src < fastdds_statistics_backend.repos

	Build the packages:

colcon build

Note

Being based on CMake [https://cmake.org], it is possible to pass the CMake configuration options to the colcon build
command. For more information on the specific syntax, please refer to the
CMake specific arguments [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments]
page of the colcon [https://colcon.readthedocs.io/en/released/] manual.

Instead of passing CMake configuration options on the CLI, it is also possible to use a
colcon.meta file [https://colcon.readthedocs.io/en/released/user/configuration.html?highlight=meta#meta-files]
to set the configuration.
The eProsima Fast DDS Statistics Backend repository already includes a colcon.meta file
with the default configuration, which can be tuned by the user.

1.1.4. CMake installation

This section explains how to compile eProsima Fast DDS Statistics Backend with CMake [https://cmake.org],
either locally or globally.

1.1.4.1. Local installation

	Follow the eProsima Fast DDS local installation guide [https://fast-dds.docs.eprosima.com/en/latest/installation/sources/sources_linux.html#local-installation]
to install eProsmia Fast DDS and all its dependencies

	Install eProsima Fast DDS Statistics Backend:

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-DDS-statistics-backend.git
mkdir Fast-DDS-statistics-backend/build
cd Fast-DDS-statistics-backend/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/Fast-DDS/install -DCMAKE_PREFIX_PATH=~/Fast-DDS/install
sudo cmake --build . --target install

Note

By default, eProsima Fast DDS Statistics Backend does not compile tests.
However, they can be activated by downloading and installing Gtest [https://github.com/google/googletest],
and enabling the corresponding cmake option.

1.1.4.2. Global installation

	Follow the eProsima Fast DDS global installation guide [https://fast-dds.docs.eprosima.com/en/latest/installation/sources/sources_linux.html#global-installation]
to install eProsmia Fast DDS and all its dependencies

	Install eProsima Fast DDS Statistics Backend:

cd ~/Fast-DDS
git clone https://github.com/eProsima/Fast-DDS-statistics-backend.git
mkdir Fast-DDS-statistics-backend/build
cd Fast-DDS-statistics-backend/build
cmake ..
cmake --build . --target install

1.1.4.3. Run an application

When running an instance of an application using eProsima Fast DDS Statistics Backend,
it must be linked with the library where the packages have been installed,
which in the case of system-wide installation is: /usr/local/lib/
(if local installation is used, adjust for the correct directory).
There are two possibilities:

	Prepare the environment locally by typing the command:

export LD_LIBRARY_PATH=/usr/local/lib/

	Add it permanently it to the PATH, by typing:

echo 'export LD_LIBRARY_PATH=/usr/local/lib/' >> ~/.bashrc

2. CMake options

eProsima Fast DDS Statistics Backend provides several CMake options for build configuration of the library.

	Option

	Description

	Possible values

	Default

	BUILD_DOCS

	Build the library documentation. Set to ON if

BUILD_DOCS_TESTS is set to ON.

	ON OFF

	OFF

	BUILD_TESTS

	Build the library tests.

	ON OFF

	OFF

	BUILD_DOCS_TESTS

	Build the library documentation tests. Setting this

ON will set BUILD_DOCS to ON

	ON OFF

	OFF

	BUILD_SHARED_LIBS

	Builds internal libraries as shared libraries, i.e.

causes add_library() CMake function to create

shared libraries if on. All libraries are built

shared unless the library was explicitly added as

a static library.

	ON OFF

	ON

1. StatisticsBackend

Singleton StatisticsBackend is the entry point for applications that want to gather statistics information about
a Fast DDS network using Fast DDS Statistics module.
It provides the API necessary for starting and stopping monitorizations on a given domain or Fast DDS Discovery Server
network, as well as the functions to extract statistics information about said monitorizations.

Fast DDS Statistics Backend can monitor several DDS domains and Fast DDS Discovery Server networks at the same time,
notifying applications about changes in the network and arrival of new statistics data using two listeners which
contain a set of callbacks that the application implements.

	1.1. Initialize a monitor

	1.2. Stop a monitor

	1.3. Clearing data

	1.4. Reset Fast DDS Statistics Backend

	1.5. Set listeners

	1.6. Get entities domain view graph
	1.6.1. Example

	1.7. Get entity meta information
	1.7.1. Host Info example

	1.7.2. User Info example

	1.7.3. Process Info example

	1.7.4. Locator Info example

	1.7.5. Domain Info example

	1.7.6. Participant Info example

	1.7.7. DataReader Info example

	1.7.8. DataWriter Info example

	1.7.9. Topic Info example

	1.8. Get entities of a given kind
	1.8.1. Get entities of a given kind related to another entity

	1.9. Get statistical data
	1.9.1. Examples
	1.9.1.1. DataWriter’s Fast DDS Latency median example

	1.9.1.2. Topic’s Fast DDS Latency mean example

	1.9.1.3. Topic’s Heartbeat count maximum example

	1.9.1.4. Host to Host Fast DDS Latency all points example

	1.10. Get status data
	1.10.1. Examples
	1.10.1.1. Proxy example

	1.10.1.2. Connection List example

	1.10.1.3. Incompatible QoS example

	1.10.1.4. Liveliness Lost example

	1.10.1.5. Liveliness Changed example

	1.10.1.6. Deadline Missed example

	1.10.1.7. Sample Lost example

	1.11. Get entity status

	1.12. Get entity type

	1.13. Set entity alias

	1.14. Check whether an entity is active

	1.15. Check whether an entity is builtin

	1.16. Saving and restoring the statistics data

1.1. Initialize a monitor

Initializing a monitor on a certain Domain ID makes eProsima Fast DDS Statistics Backend
start monitoring the statistics data and entity discoveries on that domain.
No statistics data will be gathered unless there is a monitor initialized in the required domain.

StatisticsBackend provides three overloads of init_monitor() that can be used to start a monitorization on a
DDS domain or a Fast DDS Discovery Server network.

// Init a monitor in DDS domain 0 with no listener associated.
EntityId domain_monitor_id =
 StatisticsBackend::init_monitor(0);

// Init a monitor for a Fast DDS Discovery Server network which server is located in IPv4
// address 127.0.0.1 and port 11811 using UDP as transport layer, and that uses the default GUID prefix
// eprosima::fastdds::rtps::DEFAULT_ROS2_SERVER_GUIDPREFIX.
// The monitor has no listener associated.
EntityId disc_server_monitor_id =
 StatisticsBackend::init_monitor("UDPv4:[127.0.0.1]:11811");

// Init a monitor for a Fast DDS Discovery Server network which server is located in IPv4
// address 127.0.0.1 and port 11811 using UDP as transport layer, and that uses the GUID prefix
// "44.53.01.5f.45.50.52.4f.53.49.4d.41".
// The monitor has no listener associated.
EntityId disc_server_prefix_monitor_id =
 StatisticsBackend::init_monitor("44.53.01.5f.45.50.52.4f.53.49.4d.41", "UDPv4:[localhost]:11811");

Furthermore, it is possible to initialize a monitor with a custom DomainListener.
Please refer to DomainListener for more information about the DomainListener and its
functionality.

CustomDomainListener domain_listener;

// Init a monitor in DDS domain 0 with a custom listener.
EntityId domain_monitor_id =
 StatisticsBackend::init_monitor(0, &domain_listener);

// Init a monitor for a Fast DDS Discovery Server network which server is located in IPv4
// address 127.0.0.1 and port 11811 using UDP as transport layer, and that uses the default GUID prefix
// eprosima::fastdds::rtps::DEFAULT_ROS2_SERVER_GUIDPREFIX.
// The monitor uses a custom listener.
EntityId disc_server_monitor_id =
 StatisticsBackend::init_monitor("UDPv4:[127.0.0.1]:11811", &domain_listener);

// Init a monitor for a Fast DDS Discovery Server network which server is located in IPv4
// address 127.0.0.1 and port 11811 using UDP transport layer, and that uses the GUID prefix
// "44.53.01.5f.45.50.52.4f.53.49.4d.41".
// The monitor uses a custom listener.
EntityId disc_server_prefix_monitor_id =
 StatisticsBackend::init_monitor("44.53.01.5f.45.50.52.4f.53.49.4d.41", "UDPv4:[127.0.0.1]:11811",
 &domain_listener);

In addition, init_monitor() allows for specifying which monitorization events should be notified.
This is done by setting a CallbackMask where the active callbacks from the listener are specified.
Moreover, a mask on statistics data kind of interest can be set creating a DataKindMask

// Only get notifications when new data is available or when a new host is discovered
CallbackMask callback_mask = CallbackKind::ON_DATA_AVAILABLE | CallbackKind::ON_HOST_DISCOVERY;

// Only get notificiations about network latency or subscription throughput
DataKindMask datakind_mask = DataKind::NETWORK_LATENCY | DataKind::SUBSCRIPTION_THROUGHPUT;

CustomDomainListener domain_listener;

// Init a monitor in DDS domain 0 with a custom listener, a CallbackMask, and a DataKindMask
EntityId domain_monitor_id =
 StatisticsBackend::init_monitor(0, &domain_listener, callback_mask, datakind_mask);

// Init a monitor for a Fast DDS Discovery Server network which server is located in IPv4
// address 127.0.0.1 and port 11811 using UDP transport layer, and that uses the default GUID prefix
// eprosima::fastdds::rtps::DEFAULT_ROS2_SERVER_GUIDPREFIX.
// The monitor uses a custom listener, a CallbackMask, and a DataKindMask.
EntityId disc_server_monitor_id =
 StatisticsBackend::init_monitor("UDPv4:[localhost]:11811", &domain_listener, callback_mask,
 datakind_mask);

// Init a monitor for a Fast DDS Discovery Server network which server is located in IPv4
// address 127.0.0.1 and port 11811 using UDP transport layer, and that uses the GUID prefix
// "44.53.01.5f.45.50.52.4f.53.49.4d.41".
// The monitor uses a custom listener, a CallbackMask, and a DataKindMask.
EntityId disc_server_prefix_monitor_id =
 StatisticsBackend::init_monitor("44.53.01.5f.45.50.52.4f.53.49.4d.41", "UDPv4:[127.0.0.1]:11811",
 &domain_listener, callback_mask, datakind_mask);

init_monitor() throws exceptions in the following cases:

	BadParameter if a monitor is already created for the given DDS domain or Fast DDS Discovery Server network.

	Error if the creation of the monitor fails

1.2. Stop a monitor

Fast DDS Statistics Backend allows for a monitorization to be stopped at any time.
Stopping a monitorization merely means that the internal statistics DataReaders are disabled, but the already received
data is still accessible to applications through the query API (see Get statistical data).
Is is important to note that:

	Calls to stop_monitor() on an already stopped monitor take no effect.

	stop_monitor() must be called before calling clear_monitor().

	stop_monitor() throws BadParameter if the provided monitor ID is not yet registered.

// Init a monitor in DDS domain 0 with no listener associated
EntityId domain_monitor_id = StatisticsBackend::init_monitor(0);
// Stop the monitor
StatisticsBackend::stop_monitor(domain_monitor_id);

1.3. Clearing data

eProsima Fast DDS Statistics Backend monitors both the entities discovered in a certain DDS domain or Fast DDS
Discovery Server network, and the statistic data related to these entities.
StatisticsBackend provides several methods to clear the data contained in the internal database:

	clear_statistics_data() commands the deletion of old statistics data contained within the database.
The timestamp refers to the time from where to keep data.
Use the_end_of_time() to remove all data efficiently (used by default).

	clear_inactive_entities() deletes from the database those entities that are no longer
alive and communicating (see Check whether an entity is active for more information).

// Init a monitor in DDS domain 0 with no listener associated
EntityId domain_monitor_id = StatisticsBackend::init_monitor(0);
// Clear statistics data previous to time given (in this case it removes everything older than 5 minutes)
StatisticsBackend::clear_statistics_data(
 std::chrono::system_clock::now() - std::chrono::minutes(5));
// Clear all statistics data
StatisticsBackend::clear_statistics_data();
// Clear inactive entities
StatisticsBackend::clear_inactive_entities();
// Stop the monitor
StatisticsBackend::stop_monitor(domain_monitor_id);

1.4. Reset Fast DDS Statistics Backend

If the user needs to restart Fast DDS Statistics Backend returning to the initial conditions, reset() is provided.
Calling this method clears all the data collected since the first monitor was initialized, erases all monitors (not
being available for restarting afterwards), and removes the physical listener
(see Set listeners for more information).
In order to call reset(), all monitors have to be stopped (inactive).
Otherwise it throws PreconditionNotMet.

// Init a monitor in DDS domain 0 with no listener associated
EntityId domain_monitor_id = StatisticsBackend::init_monitor(0);
// Stop the monitor
StatisticsBackend::stop_monitor(domain_monitor_id);
// Reset Fast DDS Statistics Backend
StatisticsBackend::reset();

1.5. Set listeners

As explained in Listeners, each Fast DDS Statistics Backend monitor has two listeners:

	PhysicalListener: Registers events about changes in the physical aspects of the communication (hosts, users,
processes, and locators).

	DomainListener: Registers events about changes in the DDS network (domain, participants, topics, data readers,
and data writers).

Since the physical aspects of the communication can be shared across different DDS domains and Fast DDS Discovery
Server networks, only one PhysicalListener can be set for the entire application.

Important

Even though the PhysicalListener can be set at any time, it is recommended to set it prior to initializing any
monitoring, so that no physical events are missed.

Furthermore, it is possible to change the DomainListener, CallbackMask, and DataKindMask of any
monitor at any time.

// Set a physical listener with all callbacks enabled
CustomPhysicalListener physical_listener;
StatisticsBackend::set_physical_listener(&physical_listener, CallbackMask::all());

// Init a monitor in DDS domain 0 with no listener associated
EntityId domain_monitor_id = StatisticsBackend::init_monitor(0);

// Add a domain listener to the monitor with all callbacks enabled and that does no notify
// of any statistics data
CustomDomainListener domain_listener;
StatisticsBackend::set_domain_listener(
 domain_monitor_id, &domain_listener, CallbackMask::all(), DataKindMask::none());

set_domain_listener() throws BadParameter if the given monitor ID is not yet registered.

1.6. Get entities domain view graph

Fast DDS Statistics Backend allows to retrieve the entire graph of active entities for which the singleton holds
statistics data.
The result of this query is a Graph tree structure that contains the info of each entity.
To be able to understand and interpret this tree, it is required to know about all the available entities and the inner
relations between them.
Following, there is a diagram of the relation between the Fast DDS Statistics Backend entities, and how are they
divided into physical and domain related.
For more information about the different EntityKind please refer to EntityKind.

[image: ../../_images/internal_db.svg]Fast DDS Statistics Backend entity relations and their division into physical and domain related.

1.6.1. Example

The on_domain_view_graph_update() DomainListener callback notifies when a domain has updated
its graph. Alternatively, the graph can be regenerated manually by calling regenerate_domain_graph():

StatisticsBackend::regenerate_domain_graph(domain_id);

For the following example, a simple scenario is considered, where there is one process running two participants on the
same domain; one with a data reader and the other one with a data writer (both in the same topic).
This means that there is only one USER within a single HOST.
The application can retrieve the network graph by:

Graph domain_view_graph = StatisticsBackend::get_domain_view_graph(domain_id);

In this example, the previous call would return a Graph object similar to the following:

{
 "kind": "domain",
 "domain": "0",
 "topics":
 {
 "5":
 {
 "kind": "topic",
 "metatraffic": false,
 "alias": "Square"
 }
 },
 "hosts":
 {
 "2":
 {
 "kind": "host",
 "metatraffic": false,
 "alias": "example_host_alias",
 "status": "OK",
 "users":
 {
 "3":
 {
 "kind": "user",
 "metatraffic": false,
 "alias": "example_user_alias",
 "status": "OK",
 "processes":
 {
 "4":
 {
 "kind": "process",
 "metatraffic": false,
 "alias": "example_process1_alias",
 "pid": "1234",
 "status": "OK",
 "participants":
 {
 "1":
 {
 "kind": "participant",
 "metatraffic": false,
 "alias": "shapes_demo_participant_1_alias",
 "status": "OK",
 "app_id": "SHAPES_DEMO",
 "endpoints":
 {
 "6":
 {
 "kind": "datawriter",
 "app_id": "SHAPES_DEMO",
 "metatraffic": false,
 "alias": "shapes_demo_datawriter_alias",
 "status": "OK",
 "topic": "5"
 }
 }
 }
 }
 },
 "8":
 {
 "kind": "process",
 "metatraffic": false,
 "alias": "example_process2_alias",
 "pid": "1235",
 "status": "OK",
 "participants":
 {
 "7":
 {
 "kind": "participant",
 "metatraffic": false,
 "alias": "shapes_demo_participant_2_alias",
 "status": "OK",
 "app_id": "SHAPES_DEMO",
 "endpoints":
 {
 "9":
 {
 "kind": "datareader",
 "app_id": "SHAPES_DEMO",
 "metatraffic": false,
 "alias": "shapes_demo_datareader_alias",
 "status": "OK",
 "topic": "5"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

Then, the application can extract information about the entities from the graph as shown below:

std::cout << "Domain: " << domain_view_graph[DOMAIN_ENTITY_TAG] << std::endl;
// Iterate
for (const auto& host : domain_view_graph[HOST_CONTAINER_TAG])
{
 std::cout << "\tHost alias: " << host[ALIAS_TAG] << std::endl;
 std::cout << "\tHost status: " << host[STATUS_TAG] << std::endl;
 for (const auto& user : host[USER_CONTAINER_TAG])
 {
 std::cout << "\t\tUser alias: " << user[ALIAS_TAG] << std::endl;
 std::cout << "\t\tUser status: " << user[STATUS_TAG] << std::endl;
 for (const auto& process : user[PROCESS_CONTAINER_TAG])
 {
 std::cout << "\t\t\tProcess alias: " << process[ALIAS_TAG] << std::endl;
 std::cout << "\t\t\tProcess PID: " << process[PID_TAG] << std::endl;
 std::cout << "\t\t\tProcess status: " << process[STATUS_TAG] << std::endl;
 for (const auto& participant : process[PARTICIPANT_CONTAINER_TAG])
 {
 std::cout << "\t\t\t\tParticipant alias: " << participant[ALIAS_TAG] << std::endl;
 std::cout << "\t\t\t\tParticipant app_id: " << participant[APP_ID_TAG] << std::endl;
 std::cout << "\t\t\t\tParticipant status: " << participant[STATUS_TAG] << std::endl;
 for (const auto& endpoint : participant[ENDPOINT_CONTAINER_TAG])
 {
 std::cout << "\t\t\t\t\tEndpoint alias: " << endpoint[ALIAS_TAG] << std::endl;
 std::cout << "\t\t\t\t\tEndpoint kind: " << endpoint[KIND_TAG] << std::endl;
 std::cout << "\t\t\t\t\tEndpoint app_id: " << endpoint[APP_ID_TAG] << std::endl;
 std::cout << "\t\t\t\t\tEndpoint status: " << endpoint[STATUS_TAG] << std::endl;
 }
 }
 }
 }
}
for (const auto& topic : domain_view_graph[TOPIC_CONTAINER_TAG])
{
 std::cout << "\tTopic alias: " << topic[ALIAS_TAG] << std::endl;
 std::cout << "\tTopic metatraffic: " << topic[METATRAFFIC_TAG] << std::endl;
}

Running the previous snippet on the given example should output:

Domain: 0
 Host alias: "example_host_alias"
 Host status: "OK"
 User alias: "example_user_alias"
 User status: "OK"
 Process alias: "example_process1_alias"
 Process PID: "1234"
 Process status: "OK"
 Participant alias: "shapes_demo_participant_1_alias"
 Participant app_id: "SHAPES_DEMO"
 Participant status: "OK"
 Endpoint alias: "shapes_demo_datawriter_alias"
 Endpoint kind: "datawriter"
 Endpoint app_id: "SHAPES_DEMO"
 Endpoint status: "OK"
 Process alias: "example_process2_alias"
 Process PID: "1235"
 Process status: "OK"
 Participant alias: "shapes_demo_participant_2_alias"
 Participant app_id: "SHAPES_DEMO"
 Participant status: "OK"
 Endpoint alias: "shapes_demo_datareader_alias"
 Endpoint kind: "datareader"
 Endpoint app_id: "SHAPES_DEMO"
 Endpoint status: "OK"
 Topic alias: "Square"
 Topic metatraffic: false

For more information about the operations available with Graph objects, please refer to Graph.

1.7. Get entity meta information

Fast DDS Statistics Backend includes the possibility of retrieving the meta information of any given entity present
in the network.
The returned tree always includes the basic information about the entity: kind, id, name, alias and
if the entity is alive.
Depending on the EntityKind, the returned object can contain extra information such as pid, guid, qos,
locators or data_type.
get_info() returns a Info object.

Info host_info = StatisticsBackend::get_info(host_id);
Info user_info = StatisticsBackend::get_info(user_id);
Info process_info = StatisticsBackend::get_info(process_id);
Info locator_info = StatisticsBackend::get_info(locator_id);
Info domain_info = StatisticsBackend::get_info(domain_id);
Info participant_info = StatisticsBackend::get_info(participant_id);
Info datareader_info = StatisticsBackend::get_info(datareader_id);
Info datawriter_info = StatisticsBackend::get_info(datawriter_id);
Info topic_info = StatisticsBackend::get_info(topic_id);

1.7.1. Host Info example

{
 "id": 1,
 "kind": "host",
 "name": "host_name",
 "alias": "host_alias",
 "alive": true,
 "metatraffic": false,
 "status": "OK"
}

1.7.2. User Info example

{
 "id": 2,
 "kind": "user",
 "name": "user_name",
 "alias": "user_alias",
 "alive": true,
 "metatraffic": false,
 "status": "OK"
}

1.7.3. Process Info example

{
 "id": 3,
 "kind": "process",
 "name": "process_name",
 "alias": "process_alias",
 "alive": true,
 "metatraffic": false,
 "status": "OK",
 "pid": "9564"
}

1.7.4. Locator Info example

{
 "id": 4,
 "kind": "locator",
 "name": "127.0.0.1:7412",
 "alias": "localhost",
 "alive": true,
 "metatraffic": false,
 "status": "OK"
}

1.7.5. Domain Info example

{
 "id": 0,
 "kind": "domain",
 "name": "0",
 "alias": "domain_alias",
 "alive": true,
 "metatraffic": false,
 "status": "OK"
}

1.7.6. Participant Info example

{
 "id": 5,
 "kind": "participant",
 "name": "participant_name",
 "alias": "participant_alias",
 "alive": true,
 "metatraffic": false,
 "status": "OK",
 "guid": "01.0f.22.cd.59.64.04.00.05.00.00.00|00.00.01.c1",
 "qos": {
 "available_builtin_endpoints": 3135,
 "lease_duration":
 {
 "nanoseconds": 0,
 "seconds": 3
 },
 "properties":
 [
 {
 "name": "PARTICIPANT_TYPE",
 "value": "CLIENT"
 },
 {
 "name": "DS_VERSION",
 "value": "2.0"
 }
],
 "user_data": "656e636c6176653d2f3b00",
 "vendor_id": "010f"
 },
 "app_id": "SHAPES_DEMO",
 "locators":
 [
 "127.0.0.1:1234"
]
}

1.7.7. DataReader Info example

{
 "id": 6,
 "kind": "datareader",
 "name": "datareader_name",
 "alias": "datareader_alias",
 "alive": false,
 "metatraffic": false,
 "status": "OK",
 "guid": "01.0f.22.cd.59.64.04.00.05.00.00.00|00.00.01.04",
 "qos":
 {
 "data_sharing":
 {
 "domain_ids":
 [
 0
],
 "kind": "AUTO",
 "max_domains": 1,
 "shm_directory": "/dev/shm"
 },
 "deadline":
 {
 "period":
 {
 "nanoseconds": 50,
 "seconds": 10
 }
 },
 "destination_order":
 {
 "kind": "BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS"
 },
 "disable_positive_acks":
 {
 "duration":
 {
 "nanoseconds": 100,
 "seconds": 0
 },
 "enabled": true
 },
 "durability":
 {
 "kind": "VOLATILE_DURABILITY_QOS"
 },
 "durability_service":
 {
 "history_depth": 1,
 "history_kind": "KEEP_LAST_HISTORY_QOS",
 "max_instances": 30,
 "max_samples": 3000,
 "max_samples_per_instance": 100,
 "service_cleanup_delay":
 {
 "nanoseconds": 0,
 "seconds": 5
 }
 },
 "group_data": "9d46781410ff",
 "latency_budget":
 {
 "duration":
 {
 "nanoseconds": 50,
 "seconds": 10
 }
 },
 "lifespan":
 {
 "duration":
 {
 "nanoseconds": 0,
 "seconds": 10000
 }
 },
 "liveliness":
 {
 "announcement_period":
 {
 "nanoseconds": 0,
 "seconds": 3
 },
 "lease_duration":
 {
 "nanoseconds": 0,
 "seconds": 10
 },
 "kind": "AUTOMATIC_LIVELINESS_QOS"
 },
 "ownership":
 {
 "kind": "SHARED_OWNERSHIP_QOS"
 },
 "partition":
 [
 "partition_1",
 "partition_2"
],
 "presentation":
 {
 "access_scope": "INSTANCE_PRESENTATION_QOS",
 "coherent_access": false,
 "ordered_access": false
 },
 "reliability":
 {
 "kind": "RELIABLE_RELIABILITY_QOS",
 "max_blocking_time":
 {
 "nanoseconds": 0,
 "seconds": 3
 }
 },
 "representation":
 [
],
 "time_based_filter":
 {
 "minimum_separation":
 {
 "seconds": 12,
 "nanoseconds": 0
 }
 },
 "topic_data": "5b33419a",
 "type_consistency":
 {
 "force_type_validation": false,
 "ignore_member_names": false,
 "ignore_sequence_bounds": true,
 "ignore_string_bounds": true,
 "kind": "DISALLOW_TYPE_COERCION",
 "prevent_type_widening": false
 },
 "user_data": "ff00"
 },
 "app_id": "SHAPES_DEMO"
}

1.7.8. DataWriter Info example

{
 "id": 7,
 "kind": "datawriter",
 "name": "datawriter_name",
 "alias": "datawriter_alias",
 "alive": true,
 "metatraffic": false,
 "status": "OK",
 "guid": "01.0f.22.cd.59.64.04.00.02.00.00.00|00.00.01.03",
 "qos":
 {
 "data_sharing":
 {
 "domain_ids":
 [
 0
],
 "kind": "AUTO",
 "max_domains": 1,
 "shm_directory": "/dev/shm"
 },
 "deadline":
 {
 "period":
 {
 "nanoseconds": 50,
 "seconds": 10
 }
 },
 "destination_order":
 {
 "kind": "BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS"
 },
 "disable_positive_acks":
 {
 "duration":
 {
 "nanoseconds": 100,
 "seconds": 0
 },
 "enabled": true
 },
 "durability":
 {
 "kind": "VOLATILE_DURABILITY_QOS"
 },
 "durability_service":
 {
 "history_depth": 1,
 "history_kind": "KEEP_LAST_HISTORY_QOS",
 "max_instances": 30,
 "max_samples": 3000,
 "max_samples_per_instance": 100,
 "service_cleanup_delay":
 {
 "nanoseconds": 0,
 "seconds": 5
 }
 },
 "group_data": "9d46781410ff",
 "latency_budget":
 {
 "duration":
 {
 "nanoseconds": 50,
 "seconds": 10
 }
 },
 "lifespan":
 {
 "duration":
 {
 "nanoseconds": 0,
 "seconds": 10000
 }
 },
 "liveliness":
 {
 "announcement_period":
 {
 "nanoseconds": 0,
 "seconds": 3
 },
 "lease_duration":
 {
 "nanoseconds": 0,
 "seconds": 10
 },
 "kind": "AUTOMATIC_LIVELINESS_QOS"
 },
 "ownership":
 {
 "kind": "SHARED_OWNERSHIP_QOS"
 },
 "ownership_strength":
 {
 "value": 5
 },
 "partition":
 [
 "partition_1",
 "partition_2"
],
 "presentation":
 {
 "access_scope": "INSTANCE_PRESENTATION_QOS",
 "coherent_access": false,
 "ordered_access": false
 },
 "publish_mode":
 {
 "kind": "ASYNCHRONOUS_PUBLISH_MODE"
 },
 "reliability":
 {
 "kind": "RELIABLE_RELIABILITY_QOS",
 "max_blocking_time":
 {
 "nanoseconds": 0,
 "seconds": 3
 }
 },
 "representation":
 [
],
 "time_based_filter":
 {
 "minimum_separation":
 {
 "seconds": 12,
 "nanoseconds": 0
 }
 },
 "topic_data": "5b33419a",
 "user_data": "ff00"
 },
 "app_id": "SHAPES_DEMO"
}

1.7.9. Topic Info example

{
 "id": 8,
 "kind": "topic",
 "name": "topic_name",
 "alias": "topic_alias",
 "alive": true,
 "metatraffic": false,
 "status": "OK",
 "data_type": "example_data_type"
}

1.8. Get entities of a given kind

The StatisticsBackend singleton can be queried about all the entities of a given EntityKind.
For example, get_entities() function can be used to retrieve all the HOST for which statistics are reported.

// Get all hosts
std::vector<EntityId> hosts = StatisticsBackend::get_entities(EntityKind::HOST);
for (EntityId host : hosts)
{
 std::cout << "Host ID: " << host << std::endl;
}

This call to get_entities() is the same as:

StatisticsBackend::get_entities(EntityKind::HOST, EntityId::all());

1.8.1. Get entities of a given kind related to another entity

The StatisticsBackend singleton can be queried about all the entities of a given EntityKind that are related
to any entity.
For example, get_entities() function can be used to retrieve all the PARTICIPANT running on a given
HOST.

// Get all participants running in a host
std::vector<EntityId> participants = StatisticsBackend::get_entities(EntityKind::PARTICIPANT, host_id);
for (EntityId participant : participants)
{
 std::cout << "Participant ID: " << participant << std::endl;
}

get_entities() throws BadParameter in the following cases:

	if the EntityKind is INVALID

	if the EntityId does not reference a entity contained in the database or is not EntityId::all().

	if the EntityKind of the EntityId is INVALID

This function returns the related entities according to the following table:

Entity relations

	EntityId EntityKind

	Host

	User

	Process

	Domain

	Topic

	DomainParticipant

	DataWriter

	DataReader

	Locator

	Host

	Itself

	Contains

	Sub-contains

	By DomainParticipant

	By DomainParticipant

	Sub-contains

	Sub-contains

	Sub-contains

	Sub-contains

	User

	Contained

	Itself

	Contains

	By DomainParticipant

	By DomainParticipant

	Sub-contains

	Sub-contains

	Sub-contains

	By Endpoints

	Process

	Sub-contained

	Contained

	Itself

	By DomainParticipant

	By DomainParticipant

	Contains

	Sub-contains

	Sub-contains

	By Endpoints

	Domain

	By DomainParticipant

	By DomainParticipant

	By DomainParticipant

	Itself

	Contains

	Contains

	Sub-contains

	Sub-contains

	By Endpoints

	Topic

	By DomainParticipant

	By DomainParticipant

	By DomainParticipant

	Contained

	Itself

	By Endpoints

	Contains

	Contains

	By Endpoints

	DomainParticipant

	Sub-contained

	Sub-contained

	Contained

	Contained

	By Endpoints

	Itself

	Contains

	Contains

	By Endpoints

	DataWriter

	Sub-contained

	Sub-contained

	Sub-contained

	Sub-contained

	Contained

	Contained

	Itself

	By topic

	Contains

	DataReader

	Sub-contained

	Sub-contained

	Sub-contained

	Sub-contained

	Contained

	Contained

	By topic

	Itself

	Contains

	Locator

	Sub-contained

	By Endpoints

	By Endpoints

	By Endpoints

	By Endpoints

	By Endpoints

	Contained

	Contained

	Itself

	Itself: Means that the return will only contain the entity by which the query is performed, i.e. when asking for
all the HOST related to a given HOST, the return will simply be the HOST itself.

	Contains: The returned entities will be the ones that the entity by which the query is performed contains, i.e.
when asking for all the PARTICIPANT related to a PROCESS, the return will be all the
PARTICIPANT that the PROCESS contains.

	Sub-contains: The returned entities will be the ones that the entity by which the query is performed sub-contains,
i.e. when asking for all the DATAWRITER related to a USER, the return will be all the DATAWRITER
that are contained in each of the PARTICIPANT in each of the PROCESS that the USER contains.

	Contained: The returned entity will be that one in which the entity by which the query is performed is contained,
i.e. when asking for all the TOPIC related to a DATAREADER, the return will be the TOPIC in which
the DATAREADER is contained.

	Sub-contained: The returned entity will be the one in which the entity by which the query is performed is
sub-contained, i.e. when asking for all the HOST related to a PARTICIPANT, the return will be the
HOST in which the PARTICIPANT is sub-contained.

	By DomainParticipant: The returned entities will be the ones that are related to the entity by which the query is
performed through the DomainParticipant, i.e. when asking for all the HOST related to a DOMAIN, the result
will be all the HOST that have a PARTICIPANT running on said DOMAIN.

	By Endpoints: The returned entities will be the ones that are related to the entity by which the query is
performed through the endpoints (DATAREADER and DATAWRITER), i.e. when asking for all the LOCATOR
related to a TOPIC, the result will be all the LOCATOR that are used by all the DATAREADER and
DATAWRITER present in the TOPIC.

1.9. Get statistical data

Fast DDS Statistics Backend provides two overloads of get_data() to retrieve statistical data of a given
DataKind within a time frame (for more information about all the reported DataKind, please refer to
StatisticsData).
This time interval is evenly divided into the specified number of bins, each one with size
\((t_to - t_from)/(\# of bins)\).
For each of these bins, a new StatisticsData value is calculated applying the given StatisticKind to all the
data points in it.
The result is a collection of StatisticsData elements with size equal to the number of specified bins.

Important

If the number of bins is set to zero, then all data points are returned and no statistic is calculated for the
series.

Depending on the DataKind, the data is related to one or two entities, e.g. FASTDDS_LATENCY measures the
latency between a write operation on the data writer side and the notification to the user when the data is available on
reader side, whereas HEARTBEAT_COUNT contains the amount of sent HEARTBEATs.
Because of this difference, get_data() can take either one or two EntityId related to the DataKind in
question.
The following table illustrates the expected inputs depending on the query’s DataKind passed to get_data():

	DataKind

	Source collection EntityKind

	Target collection EntityKind

	FASTDDS_LATENCY

	DATAWRITER

	DATAREADER

	NETWORK_LATENCY

	PARTICIPANT

	LOCATOR

	PUBLICATION_THROUGHPUT

	DATAWRITER

	Not applicable

	SUBSCRIPTION_THROUGHPUT

	DATAREADER

	Not applicable

	RTPS_PACKETS_SENT

	PARTICIPANT

	LOCATOR

	RTPS_BYTES_SENT

	PARTICIPANT

	LOCATOR

	RTPS_PACKETS_LOST

	PARTICIPANT

	LOCATOR

	RTPS_BYTES_LOST

	PARTICIPANT

	LOCATOR

	RESENT_DATA

	DATAWRITER

	Not applicable

	HEARTBEAT_COUNT

	DATAWRITER

	Not applicable

	ACKNACK_COUNT

	DATAREADER

	Not applicable

	NACKFRAG_COUNT

	DATAREADER

	Not applicable

	GAP_COUNT

	DATAWRITER

	Not applicable

	DATA_COUNT

	DATAWRITER

	Not applicable

	PDP_PACKETS

	PARTICIPANT

	Not applicable

	EDP_PACKETS

	PARTICIPANT

	Not applicable

	DISCOVERY_TIME

	PARTICIPANT

	Not applicable

	SAMPLE_DATAS

	DATAWRITER

	Not applicable

get_data() throws BadParameter if the calling parameters are not consistent.

get_data_supported_entity_kinds() can be used to get all the EntityKind
pairs suitable for a given DataKind, according to this table.

	For a DataKind that only relates to one Entity,
the first element of the pair is the EntityKind of such Entity,
while the second element is INVALID.

	For a DataKind that relates to two Entities, the first element of the pair is the EntityKind
of the source Entity, while the second element is the EntityKind of the target Entity.

The source and target pairs returned by this method
are the source and target EntityKind accepted by get_data() for the given DataKind.
This is convenient to prepare a call to get_data() from an EntityKind.
First, call get_data_supported_entity_kinds() with the DataKind
to get the EntityKind of the related entities.
Then, call get_entities() to get the available entities of that kind.
Finally, call get_data() with the pairs that get_entities() returns.

/* Get all the EntityKind pairs related to DISCOVERED_ENTITY. */
std::vector<std::pair<EntityKind, EntityKind>> types_list =
 StatisticsBackend::get_data_supported_entity_kinds(DataKind::DISCOVERY_TIME);

/* Iterate over all the valid pairs composing the final result */
std::vector<StatisticsData> discovery_times;
for (std::pair<EntityKind, EntityKind> type_pair : types_list)
{
 /* Take the data for this pair and append it to the existing data */
 std::vector<StatisticsData> tmp = StatisticsBackend::get_data(
 DataKind::DISCOVERY_TIME,
 StatisticsBackend::get_entities(type_pair.first, host1_id),
 StatisticsBackend::get_entities(type_pair.second, host2_id));

 discovery_times.insert(discovery_times.end(), tmp.begin(), tmp.end());
}

Warning

If for a given bin, the Fast DDS Statistics Backend has no data, the value returned will be the one supplied by
std::numeric_limits<double>::quiet_NaN [https://en.cppreference.com/w/cpp/types/numeric_limits/quiet_NaN].

1.9.1. Examples

Following, some example queries are provided to serve a inspiration for applications using
Fast DDS Statistics Backend.

1.9.1.1. DataWriter’s Fast DDS Latency median example

/* Get the DataReaders related to a given DataWriter */
std::vector<EntityId> datareaders = StatisticsBackend::get_entities(EntityKind::DATAREADER, datawriter_id);

/* Get the current time */
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();

/*
 * Get the median of the FASTDDS_LATENCY of the last 10 minutes, divided into ten bins,
 * between a given DataWriter and its related DataReaders. After the operation,
 * latency_data.size() is 10. Each of the elements of latency_data is a StatisticsData
 * element which represents the median of the FASTDDS_LATENCY of that minute.
 */
std::vector<StatisticsData> latency_data = StatisticsBackend::get_data(
 DataKind::FASTDDS_LATENCY, // DataKind
 std::vector<EntityId>({datawriter_id}), // Source entities
 datareaders, // Target entities
 10, // Number of bins
 now - std::chrono::minutes(10), // t_from
 now, // t_to
 StatisticKind::MEDIAN); // Statistic

1.9.1.2. Topic’s Fast DDS Latency mean example

/* Get the DataWriters and DataReaders in a Topic */
std::vector<EntityId> topic_datawriters = StatisticsBackend::get_entities(EntityKind::DATAWRITER, topic_id);
std::vector<EntityId> topic_datareaders = StatisticsBackend::get_entities(EntityKind::DATAREADER, topic_id);

/* Get the current time */
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();

/*
 * Get the median of the FASTDDS_LATENCY of the last 10 minutes, divided into ten bins,
 * between the DataWriters of Host 1 and the DataReaders of Host 2. After the operation,
 * latency_data.size() is 10. Each of the elements of latency_data is a StatisticsData
 * element which represents the median of the FASTDDS_LATENCY of that minute.
 */
std::vector<StatisticsData> latency_data = StatisticsBackend::get_data(
 DataKind::FASTDDS_LATENCY, // DataKind
 topic_datawriters, // Source entities
 topic_datareaders, // Target entities
 10, // Number of bins
 now - std::chrono::minutes(10), // t_from
 now, // t_to
 StatisticKind::MEAN); // Statistic

1.9.1.3. Topic’s Heartbeat count maximum example

std::vector<EntityId> participant_datawriters = StatisticsBackend::get_entities(EntityKind::DATAWRITER,
 participant_id);

/* Get the current time */
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();

/*
 * Get the maximum of the HEARTBEAT_COUNT of the last 10 minutes, divided into ten bins,
 * of the DataWriters of a given Participant. After the operation, heartbeat_data.size() is
 * 10. Each of the elements of heartbeat_data is a StatisticsData element which represents
 * the maximum of the HEARTBEAT_COUNT of that minute.
 */
std::vector<StatisticsData> heartbeat_data = StatisticsBackend::get_data(
 DataKind::HEARTBEAT_COUNT, // DataKind
 participant_datawriters, // Source entities
 10, // Number of bins
 now - std::chrono::minutes(10), // t_from
 now, // t_to
 StatisticKind::MAX); // Statistic

1.9.1.4. Host to Host Fast DDS Latency all points example

It is also possible to retrieve all the data points of a given DataKind within the time frame.
This is done by setting the number of bins to 0.
In this case, the StatisticKind is ignored so it can be left to its default value.

std::vector<EntityId> host1_datawriters = StatisticsBackend::get_entities(EntityKind::DATAWRITER, host1_id);
std::vector<EntityId> host2_datareaders = StatisticsBackend::get_entities(EntityKind::DATAREADER, host2_id);

/* Get the current time */
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();

/*
 * Get all the FASTDDS_LATENCY data points of the last 10 minutes between the DataWriters
 * of Host 1 and the DataReaders of Host 2. data.size() == total number of data points
 * received. Since bins is 0, the statistic is left as default.
 */
std::vector<StatisticsData> data = StatisticsBackend::get_data(
 DataKind::FASTDDS_LATENCY, // DataKind
 host1_datawriters, // Source entities
 host2_datareaders, // Target entities
 0, // Number of bins
 now - std::chrono::minutes(10), // t_from
 now); // t_to

For more information about the available DataKind and StatisticKind please refer to StatisticsData
and StatisticKind respectively.

1.10. Get status data

Fast DDS Statistics Backend provides a template of get_status_data() to retrieve monitor service status data
sample of a given StatusKind (for more information about all the reported StatusKind, please refer to
StatusData).

The sample is passed as an argument to the function along with the EntityId of the entity whose status is to
be known. This sample is populated with the most recent status data of that kind.

Only PARTICIPANT, DATAWRITER and DATAREADER have associated status data. The following table
describes which StatusKind each of these entities has:

	StatusKind

	PARTICIPANT

	DATAWRITER

	DATAREADER

	PROXY

	Yes

	Yes

	Yes

	CONNECTION_LIST

	Yes

	Yes

	Yes

	INCOMPATIBLE_QOS

	No

	Yes

	Yes

	LIVELINESS_LOST

	No

	Yes

	No

	LIVELINESS_CHANGED

	No

	No

	Yes

	DEADLINE_MISSED

	No

	Yes

	Yes

	SAMPLE_LOST

	No

	No

	Yes

Note

For entity transitions, WARNING status level takes precedence over OK level, and ERROR does over
WARNING and OK levels.

get_status_data() throws BadParameter in the following cases:

	If the EntityId does not reference a Entity contained in the database.

	If there is no specialization template for the requested StatusKind.

	If the EntityKind of the Entity doesn’t have the associated StatusKind.

Every time new status data is available there will be a callback to Domain Listener’s
on_status_reported() (for more information about DomainListener callbacks, please refer to
DomainListener).

1.10.1. Examples

Following, some example queries are provided to serve a inspiration for applications using
Fast DDS Statistics Backend.

1.10.1.1. Proxy example

/*
 * Get the proxy info associated to an entity.
 */
ProxySample proxy_sample;
StatisticsBackend::get_status_data(
 entity_id, // EntityId (DomainParticipant, DataWriter or DataReader)
 proxy_sample); // Sample to be populated

1.10.1.2. Connection List example

/*
 * Get the connection list sample associated to an entity.
 */
ConnectionListSample connection_list_sample_;
StatisticsBackend::get_status_data(
 entity_id, // EntityId (DomainParticipant, DataWriter or DataReader)
 connection_list_sample_); // Sample to be populated

1.10.1.3. Incompatible QoS example

/*
 * Get the incompatible qos info associated to an entity.
 */
IncompatibleQosSample incompatible_qos_sample;
StatisticsBackend::get_status_data(
 entity_id, // EntityId (DataWriter or DataReader)
 incompatible_qos_sample); // Sample to be populated

1.10.1.4. Liveliness Lost example

/*
 * Get the liveliness lost info associated to an entity.
 */
LivelinessLostSample liveliness_lost_sample;
StatisticsBackend::get_status_data(
 entity_id, // EntityId (DataWriter)
 liveliness_lost_sample); // Sample to be populated

1.10.1.5. Liveliness Changed example

/*
 * Get the liveliness changed info associated to an entity.
 */
LivelinessChangedSample liveliness_changed_sample;
StatisticsBackend::get_status_data(
 entity_id, // EntityId (DataReader)
 liveliness_changed_sample); // Sample to be populated

1.10.1.6. Deadline Missed example

/*
 * Get the deadline missed info associated to an entity.
 */
DeadlineMissedSample deadline_missed_sample;
StatisticsBackend::get_status_data(
 entity_id, // EntityId (DataWriter or DataReader)
 deadline_missed_sample); // Sample to be populated

1.10.1.7. Sample Lost example

/*
 * Get the sample lost info associated to an entity.
 */
SampleLostSample sample_lost_sample;
StatisticsBackend::get_status_data(
 entity_id, // EntityId (DataWriter or DataReader)
 sample_lost_sample); // Sample to be populated

1.11. Get entity status

It is also possible to retrieve the StatusLevel of an entity given its EntityId:

StatusLevel status = StatisticsBackend::get_status(entity_id);

get_status() throws BadParameter if there is no entity with the given ID.

1.12. Get entity type

It is also possible to retrieve the EntityKind of an entity given its EntityId:

EntityKind kind = StatisticsBackend::get_type(entity_id);

get_type() throws BadParameter if there is no entity with the given ID.

1.13. Set entity alias

Even though the Fast DDS Statistics Backend provides a name for each entity, this default name can be lengthy and
not really self-explanatory and user-friendly.
Therefore, set_alias() allows the user to apply any alias to the desired entity so it can be easily identified.
If the entity provided does not exist set_alias() throws BadParameter.

StatisticsBackend::set_alias(entity_id, "my_alias");

1.14. Check whether an entity is active

Fast DDS Statistics Backend keeps the statistical data record of
all the entities that have at some point been detected by a monitor.
However, it is possible that some of this entities have already abandoned the network, thus becoming inactive.
For this reason, StatisticsBackend exposes a is_active() function that returns whether an entity is active,
given its EntityId.

bool active = StatisticsBackend::is_active(entity_id);

1.15. Check whether an entity is builtin

eProsima Fast DDS Statistics Backend discovers any DDS entity in the monitored domain or Fast DDS Discovery Server
network, including the builtin entities used to exchange metatraffic data that allows mutual discovery.
is_metatraffic() returns whether the entity is related to these builtin entities or not.
The possible DDS builtin entities are always of TOPIC, DATAWRITER, or DATAREADER kind (refer to
EntityKind for more information).
This function allows the user to discriminate between the topics and endpoints exchanging metatraffic data and those
that are exchanging user data.

bool metatraffic = StatisticsBackend::is_metatraffic(entity_id);

1.16. Saving and restoring the statistics data

Fast DDS Statistics Backend allows to dump the contents of the database to the file system.
This may be used as a backup procedure, or as a means of analyzing the data offline later.
It is also possible to load a dump previously saved, which allows for this analysis to be
done with any front-end that communicates with the Fast DDS Statistics Backend.

	Use dump_database() to save the content of the Backend’s database to a file.

	Use load_database() to loaded a saved database to the Backend.

For information about the format of the dumped data, please, refer to Database dumps.

Warning

Loading a saved database can only be done on an empty Backend.
This means that no monitors were initialized since the Backend started,
or that the Backend has been reset using reset().
If load_database() is used on a non-empty Backend,
an exception will be issued.

The following snippet shows how to dump the current database contents to a file,
and then load another data set that was saved previously,
resetting the Backend in between.

// Save the database to a file
StatisticsBackend::dump_database("new_backend_dump.json", false);

// Reset the Backend to empty the current database contents
StatisticsBackend::reset();

// Load an old backup to the emptied Backend
StatisticsBackend::load_database("old_backend_dump.json");

The bool parameter of dump_database() indicates if the statistics data
of all entities must be cleared after the dump.

// Save the database to a file, cleaning the statistics data
StatisticsBackend::dump_database("new_backend_dump.json", true);

2. Types

	2.1. StatisticsData

	2.2. StatisticKind

	2.3. StatusData

	2.4. EntityKind

	2.5. EntityId
	2.5.1. EntityId wildcard

	2.5.2. Invalid EntityId

	2.5.3. Invalidate an EntityId

	2.5.4. Check validity of an EntityId

	2.5.5. Check EntityId represents all Entities

	2.5.6. Check validity and uniqueness of an EntityId

	2.5.7. Comparison operations

	2.5.8. Output to OStream

	2.6. StatusLevel

	2.7. JSON Tags
	2.7.1. Dump Tags Example

2.1. StatisticsData

The eProsima Fast DDS Statistics Backend records statistics data of different
nature, as provided by eProsima Fast DDS Statistics Module, e.g., latency or message count.
We refer to the nature of these data values as their DataKind.

	FASTDDS_LATENCY: The latency between a write operation
in the data writer and the moment the data is available in the data reader.

	NETWORK_LATENCY: The latency in the communication between two locators.

	PUBLICATION_THROUGHPUT: Amount of data (in Mb/s) sent by a data writer.

	SUBSCRIPTION_THROUGHPUT: Amount of data (in Mb/s) received by a data reader.

	RTPS_PACKETS_SENT: Amount of packets sent from a participant to a locator.

	RTPS_BYTES_SENT: Amount of bytes sent from a participant to a locator.

	RTPS_PACKETS_LOST: Amount of packets lost from a participant to a locator.

	RTPS_BYTES_LOST: Amount of bytes lost from a participant to a locator.

	RESENT_DATA: Amount of DATA/DATAFRAG sub-messages that had to be resent
from a data writer.

	HEARTBEAT_COUNT: Amount of HEARTBEATs that a data writer sends.

	ACKNACK_COUNT: Amount of ACKNACKs that a data reader sends.

	NACKFRAG_COUNT: Amount of NACKFRAGs that a data reader sends.

	GAP_COUNT: Amount of GAPs that a data writer sends.

	DATA_COUNT: Amount of DATA/DATAFRAGs that a data writer sends.

	PDP_PACKETS: Amount of PDP packets sent by a participant.

	EDP_PACKETS: Amount of EDP packets sent by a participant.

	DISCOVERY_TIME: Time when a participant discovers another DDS entity.

	SAMPLE_DATAS: Amount of DATA/DATAFRAGs needed to send a single sample.

Each statistics data kind may relate to one or two entities where they are measured.
For example, a FASTDDS_LATENCY is always measured between a data data writer
and a data reader, whereas PDP_PACKETS is always measured in a participant,
with no other entity involved in the measurement.
The following table describes which entity kinds are involved in the
measurement of each data kind:

	Signature

	Source Entity

	Target Entity

	FASTDDS_LATENCY

	DataWriter

	DataReader

	NETWORK_LATENCY

	Locator

	Locator

	PUBLICATION_THROUGHPUT

	DataWriter

	-

	SUBSCRIPTION_THROUGHPUT

	DataReader

	-

	RTPS_PACKETS_SENT

	DomainParticipant

	Locator

	RTPS_BYTES_SENT

	DomainParticipant

	Locator

	RTPS_PACKETS_LOST

	DomainParticipant

	Locator

	RTPS_BYTES_LOST

	DomainParticipant

	Locator

	RESENT_DATA

	DataWriter

	-

	HEARTBEAT_COUNT

	DataWriter

	-

	ACKNACK_COUNT

	DataReader

	-

	NACKFRAG_COUNT

	DataReader

	-

	GAP_COUNT

	DataWriter

	-

	DATA_COUNT

	DataWriter

	-

	PDP_PACKETS

	DomainParticipant

	-

	EDP_PACKETS

	DomainParticipant

	-

	DISCOVERY_TIME

	DomainParticipant

	DDSEntity

	SAMPLE_DATAS

	DataWriter

	-

2.2. StatisticKind

get_data() allows for retrieving data from the eProsima Fast DDS Statistics Backend
specifying the kind of statistic we want to receive in the output.
The available statistics are:

	MEAN: Numerical mean of values in the set.

	STANDARD_DEVIATION: Standard Deviation of the values in the set.

	MAX: Maximum value in the set.

	MIN: Minimum value in the set.

	MEDIAN: Median value of the set.

	COUNT: Amount of values in the set.

	SUM: Summation of the values in the set.

	NONE: Non accumulative kind.
It chooses a single data point among those in the set.

2.3. StatusData

The eProsima Fast DDS Statistics Backend records entities status data of different nature, as provided by the
Monitor Service from eProsima Fast DDS Statistics Module, e.g., incompatible QoS or the number of lost samples. We
refer to the nature of these status data values as their StatusKind.

	PROXY: Collection of parameters describing the proxy data of that entity.

	CONNECTION_LIST: List of connections used by this entity. Each of the elements is a connection where
the possible values for the connection mode are:

	Intraprocess

	Data sharing

	Transport

In addition, information comprising the announced locators and locator in use with each one of the matched entities
is also included.

	INCOMPATIBLE_QOS: Status of the incompatible QoS of that entity.

	DATAWRITER Incompatible QoS Offered.

	DATAREADER Incompatible QoS Requested.

	LIVELINESS_LOST: Tracks the status of the number of times that liveliness was lost by a DATAWRITER.

	LIVELINESS_CHANGED: Tracks the status of the number of times that liveliness status changed in a
DATAREADER.

	DEADLINE_MISSED: The status of the number of missed deadlines registered in that entity.

	SAMPLE_LOST: Tracks the number of times that this entity lost samples.

Only PARTICIPANT, DATAWRITER and DATAREADER have associated status data. The following table
describes which StatusKind each of these entities has:

	StatusKind

	PARTICIPANT

	DATAWRITER

	DATAREADER

	PROXY

	Yes

	Yes

	Yes

	CONNECTION_LIST

	Yes

	Yes

	Yes

	INCOMPATIBLE_QOS

	No

	Yes

	Yes

	LIVELINESS_LOST

	No

	Yes

	No

	LIVELINESS_CHANGED

	No

	No

	Yes

	DEADLINE_MISSED

	No

	Yes

	Yes

	SAMPLE_LOST

	No

	No

	Yes

Each StatusKind has an associated StatusLevel. OK status is obtained when the monitor service message
reports no problem.
Entity’s associated StatusLevel is obtained from all status data. The following table describes which
StatusLevel’s are associated with each StatusKind:

	StatusKind

	StatusLevel’s

	PROXY

	OK

	CONNECTION_LIST

	OK

	INCOMPATIBLE_QOS

	OK/ERROR

	LIVELINESS_LOST

	OK/WARNING

	LIVELINESS_CHANGED

	OK

	DEADLINE_MISSED

	OK/WARNING

	SAMPLE_LOST

	OK/WARNING

Note

For entity transitions, WARNING status level takes precedence over OK level, and ERROR does over
WARNING and OK levels.

2.4. EntityKind

The eProsima Fast DDS Statistics Backend keeps track of the entities discovered
in the DDS layout.
The following list shows the different entities that are tracked:

	HOST: The host or machine where a participant is allocated.

	USER: The user that has executed a participant.

	PROCESS: The process where the participant is running.

	DOMAIN: Abstract DDS network by Domain or by Discovery Server.

	TOPIC: DDS Topic.

	PARTICIPANT: DDS Domain Participant.

	DATAWRITER: DDS DataWriter.

	DATAREADER: DDS DataReader.

	LOCATOR: Physical locator that a communication is using.

2.5. EntityId

When monitoring a domain (see Initialize a monitor), Fast DDS Statistics Backend labels all the different
discovered entities with an EntityId identifier that is unique in the context of the StatisticsBackend
instance.
This EntityId is used by the application, among other things, to query statistical data to the backend (see
Get statistical data).
To ease the use of the Fast DDS Statistics Backend API, EntityId exposes certain commonly used operations:

2.5.1. EntityId wildcard

EntityId allows for retrieving an ID that represents all the EntityIds:

EntityId all = EntityId::all();

2.5.2. Invalid EntityId

EntityId allows for retrieving an invalid ID:

EntityId invalid = EntityId::invalid();

2.5.3. Invalidate an EntityId

It is also possible to invalidate an EntityId:

EntityId entity_id;
entity_id.invalidate();

2.5.4. Check validity of an EntityId

It can be checked whether an EntityId is valid:

EntityId entity_id;
bool check = entity_id.is_valid();

2.5.5. Check EntityId represents all Entities

It can be checked whether an EntityId represents all the EntityIds:

EntityId entity_id;
bool check = entity_id.is_all();

2.5.6. Check validity and uniqueness of an EntityId

It can be checked whether an EntityId is valid and unique:

EntityId entity_id;
bool check = entity_id.is_valid_and_unique();

2.5.7. Comparison operations

EntityIds can be compared between them:

EntityId entity_id_1;
EntityId entity_id_2;
bool check = entity_id_1 < entity_id_2;
check = entity_id_1 <= entity_id_2;
check = entity_id_1 > entity_id_2;
check = entity_id_1 >= entity_id_2;
check = entity_id_1 == entity_id_2;
check = entity_id_1 != entity_id_2;

2.5.8. Output to OStream

EntityIds can be output to std::ostream:

EntityId entity_id;
std::cout << "EntityId: " << entity_id << std::endl;

2.6. StatusLevel

The eProsima Fast DDS Statistics Backend keeps track of the status of some of its database members.
The following list shows the possible status values along with their corresponding descriptions.

	OK: There are no issues to report.

	WARNING: There are some warnings or minor issues. Some attention may be required.

	ERROR: There are critical errors and normal operation is disrupted.
Immediate action is necessary to resolve the problem.

2.7. JSON Tags

The StatisticsBackend uses JSON format to retrieve information in many methods as get_info(),
get_domain_view_graph() or dump_database().

2.7.1. Dump Tags Example

The following snippet shows an example of a database dump, result of calling dump_database() in a database
with one entity of each EntityKind, and one data of each DataKind:

{
 "description": "DB dump with 1 entity of each EntityKind and 1 data of each DataKind",

 "version": "0.0",

 "hosts":
 {
 "1":
 {
 "name": "host_0",
 "users": ["2"]
 }
 },

 "users":
 {
 "2":
 {
 "name": "user_0",
 "host": "1",
 "processes": ["3"]
 }
 },

 "processes":
 {
 "3":
 {
 "name": "process_0",
 "pid": "36000",
 "user": "2",
 "participants": ["6"]
 }
 },

 "domains":
 {
 "4":
 {
 "name": "domain_0",
 "participants": ["6"],
 "topics": ["5"]
 }
 },

 "topics":
 {
 "5":
 {
 "name": "topic_0",
 "data_type": "data_type",
 "domain": "4",
 "datawriters": ["7"],
 "datareaders": ["8"]
 }
 },

 "participants":
 {
 "6":
 {
 "name": "participant_0",
 "guid": "01.0f.00.00.00.00.00.00.00.00.00.00|00.00.00.00",
 "qos": {"qos": "empty"},
 "app_id": "SHAPES_DEMO",
 "process": "3",
 "domain": "4",
 "datawriters": ["7"],
 "datareaders": ["8"],

 "data":
 {
 "discovery_time":
 {
 "6":
 [
 {
 "src_time": "1",
 "time": "0",
 "remote_id": "6",
 "discovered": true
 }
]
 },
 "pdp_packets":
 [
 {
 "src_time": "0",
 "count": 2
 }
],
 "edp_packets":
 [
 {
 "src_time": "0",
 "count": 2
 }
],

 "rtps_packets_sent":
 {
 "0":
 [
 {
 "src_time": "0",
 "count": 2
 }
]
 },
 "rtps_bytes_sent":
 {
 "0":
 [
 {
 "src_time": "0",
 "magnitude": 0,
 "count": 2
 }
]
 },
 "rtps_packets_lost":
 {
 "0":
 [
 {
 "src_time": "0",
 "count": 2
 }
]
 },
 "rtps_bytes_lost":
 {
 "0":
 [
 {
 "src_time": "0",
 "magnitude": 0,
 "count": 2
 }
]
 },

 "last_reported_edp_packets":{
 "count":2,
 "src_time":"0"
 },
 "last_reported_pdp_packets":{
 "count":2,
 "src_time":"0"
 },
 "last_reported_rtps_bytes_lost":{
 "0":{
 "count":2,
 "magnitude":0,
 "src_time":"0"
 }
 },
 "last_reported_rtps_bytes_sent":{
 "0":{
 "count":2,
 "magnitude":0,
 "src_time":"0"
 }
 },
 "last_reported_rtps_packets_lost":{
 "0":{
 "count":2,
 "src_time":"0"
 }
 },
 "last_reported_rtps_packets_sent":{
 "0":{
 "count":2,
 "src_time":"0"
 }
 }
 }
 }
 },

 "datawriters":
 {
 "7":
 {
 "name": "datawriter_0",
 "guid": "01.0f.00.00.00.00.00.00.00.00.00.00|00.00.00.00",
 "qos": {"qos": "empty"},
 "app_id": "SHAPES_DEMO",
 "participant": "6",
 "topic": "5",
 "locators": ["0"],

 "data":
 {
 "publication_throughput":
 [
 {
 "src_time": "0",
 "data": 1.1
 }
],
 "resent_datas":
 [
 {
 "src_time": "0",
 "count": 2
 }
],
 "heartbeat_count":
 [
 {
 "src_time": "0",
 "count": 2
 }
],
 "gap_count":
 [
 {
 "src_time": "0",
 "count": 2
 }
],
 "data_count":
 [
 {
 "src_time": "0",
 "count": 2
 }
],
 "samples_datas":
 {
 "3":
 [
 {
 "src_time": "0",
 "count": 2
 }
]
 },
 "history2history_latency":
 {
 "8":
 [
 {
 "src_time": "0",
 "data": 1.1
 }
]
 },

 "last_reported_data_count":{
 "count":2,
 "src_time":"0"
 },
 "last_reported_gap_count":{
 "count":2,
 "src_time":"0"
 },
 "last_reported_heartbeat_count":{
 "count":2,
 "src_time":"0"
 },
 "last_reported_resent_datas":{
 "count":2,
 "src_time":"0"
 }
 }
 }
 },

 "datareaders":
 {
 "8":
 {
 "name": "datareader_0",
 "guid": "01.0f.00.00.00.00.00.00.00.00.00.00|00.00.00.00",
 "qos": {"qos": "empty"},
 "app_id": "SHAPES_DEMO",
 "participant": "6",
 "topic": "5",
 "locators": ["0"],

 "data":
 {
 "subscription_throughput":
 [
 {
 "src_time": "0",
 "data": 1.1
 }
],
 "acknack_count":
 [
 {
 "src_time": "0",
 "count": 2
 }
],
 "nackfrag_count":
 [
 {
 "src_time": "0",
 "count": 2
 }
],

 "last_reported_acknack_count":{
 "count":2,
 "src_time":"0"
 },
 "last_reported_nackfrag_count":{
 "count":2,
 "src_time":"0"
 }
 }
 }
 },

 "locators":
 {
 "0":
 {
 "name": "locator_0",
 "datawriters": ["7"],
 "datareaders": ["8"],

 "data":
 {
 "network_latency_per_locator":
 {
 "0":
 [
 {
 "src_time": "0",
 "data": 1.1
 }
]
 }
 }
 }
 }
}

3. Listeners

Listeners allow users to define actions that will be taken
in response to changes in the monitored elements, e.g.,
when the deployment layout changes or when new statistical data
has been received.

There are two kinds of listeners:

	DomainListener acts upon changes in the DDS entities
of the deployment or new statistical data arrives.

	PhysicalListener acts upon changes in the physical entities
of the deployment.

	3.1. DomainListener

	3.2. PhysicalListener

3.1. DomainListener

DomainListener is an abstract class defining the callbacks
that will be triggered in response to changes in the DDS network
(discovery of domain, participants, topics, data readers, data writers,
and arrival of new statistics data).
By default, all these callbacks are empty and do nothing.
The user should implement a specialization of this class overriding the callbacks
that are needed on the application.
Callbacks that are not overridden will maintain their empty implementation.

DomainListener defines the following callbacks:

	on_data_available():
New statistics data has been received by the backend.
The arguments in the callback specifies the kind of the received data
and the entity to which this data refers.

	on_topic_discovery():
A new topic has been discovered in the monitored domain,
or an already known topic has been updated with a new QoS value.
The topics are never undiscovered.
The arguments in the callback specifies the ID of the topic and the domain
to which it belongs.

	on_participant_discovery():
A new participant has been discovered in the monitored domain,
or an already known participant has been updated with a new
Quality of Service (QoS) value,
or an already known participant has been removed from the network.
The arguments in the callback specifies the ID of the participant and the domain
to which it belongs.

	on_datareader_discovery():
A new data reader has been discovered in the monitored domain,
or an already known data reader has been updated with a new QoS value,
or an already known data reader has been removed from the network.
The arguments in the callback specifies the ID of the data reader and the domain
to which it belongs.

	on_datawriter_discovery():
A new data writer has been discovered in the monitored domain,
or an already known data writer has been updated with a new QoS value,
or an already known data writer has been removed from the network.
The arguments in the callback specify the ID of the data writer and the domain
to which it belongs.

	on_domain_view_graph_update():
A domain view graph has been updated.
The arguments in the callback specify the ID of the domain whose graph has been updated.

	on_status_reported():
New status data has been received from the backend.
The arguments in the callback specify the status kind of the received data and the entity to which this data refers.

3.2. PhysicalListener

PhysicalListener is an abstract class defining the callbacks
that will be triggered in response to changes in the physical aspects
of the communication (hosts, users, processes, and locators)
By default, all these callbacks are empty and do nothing.
The user should implement a specialization of this class overriding the callbacks
that are needed on the application.
Callbacks that are not overridden will maintain their empty implementation.

PhysicalListener defines the following callbacks:

	on_host_discovery():
A new host has been discovered in the monitored network.
Hosts are never undiscovered.
The arguments in the callback specifies the ID of the participant
that discovered the host.

	on_user_discovery():
A new user has been discovered in the monitored network.
Users are never undiscovered.
The arguments in the callback specifies the ID of the participant
that discovered the user.

	on_process_discovery():
A new process has been discovered in the monitored network.
Processes are never undiscovered.
The arguments in the callback specifies the ID of the participant
that discovered the process.

	on_locator_discovery():
A new locator has been discovered in the monitored network.
Locators are never undiscovered.
The arguments in the callback specifies the ID of the participant
that discovered the locator.

4. Full example

4.1. Next steps

You may find this example at the eProsima Fast DDS Statistics Backend Github repository, by following
this [https://github.com/eProsima/Fast-DDS-statistics-backend/tree/main/examples/cpp/HelloWorldExample] link.

5. API Reference

	5.1. Exception
	5.1.1. BadParameter

	5.1.2. CorruptedFile

	5.1.3. Error

	5.1.4. Exception

	5.1.5. Inconsistency

	5.1.6. PreconditionNotMet

	5.1.7. Unsupported

	5.2. Listener
	5.2.1. CallbackKind

	5.2.2. CallbackMask

	5.2.3. DomainListener

	5.2.4. PhysicalListener

	5.3. StatisticsBackend

	5.4. Types
	5.4.1. Bitmask

	5.4.2. DataKind

	5.4.3. DataKindMask

	5.4.4. StatusKind

	5.4.5. DomainId

	5.4.6. EntityId

	5.4.7. EntityKind

	5.4.8. StatusLevel

	5.4.9. Graph

	5.4.10. Info

	5.4.11. StatisticKind

	5.4.12. StatisticsData

	5.4.13. StatusData

	5.4.14. Timestamp

	5.4.15. JSON Tags

5.1. Exception

	5.1.1. BadParameter

	5.1.2. CorruptedFile

	5.1.3. Error

	5.1.4. Exception

	5.1.5. Inconsistency

	5.1.6. PreconditionNotMet

	5.1.7. Unsupported

5.1.1. BadParameter

	
class BadParameter : public eprosima::statistics_backend::Exception

	Exception to signal that an operation has been called with an invalid parameter.

Public Functions

	
BadParameter(const BadParameter &other) = default

	Copies the statistics_backend::BadParameter exception into a new one.

	Parameters

	other – The original exception object to copy

	
BadParameter &operator=(const BadParameter &other) = default

	Copies the statistics_backend::BadParameter exception into the current one.

	Parameters

	other – The original statistics_backend::BadParameter exception to copy

	Returns

	the current statistics_backend::BadParameter exception after the copy

	
Exception(const char *message) noexcept

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const std::string &message)

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const Exception &other) = default

	Copies the statistics_backend::Exception object into a new one.

	Parameters

	other – The original exception object to copy

5.1.2. CorruptedFile

	
class CorruptedFile : public eprosima::statistics_backend::Exception

	Exception to signal that a file with an unexpected format has been loaded.

Public Functions

	
CorruptedFile(const CorruptedFile &other) = default

	Copies the statistics_backend::CorruptedFile exception into a new one.

	Parameters

	other – The original exception object to copy

	
CorruptedFile &operator=(const CorruptedFile &other) = default

	Copies the statistics_backend::CorruptedFile exception into the current one.

	Parameters

	other – The original statistics_backend::CorruptedFile exception to copy

	Returns

	the current statistics_backend::CorruptedFile exception after the copy

	
Exception(const char *message) noexcept

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const std::string &message)

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const Exception &other) = default

	Copies the statistics_backend::Exception object into a new one.

	Parameters

	other – The original exception object to copy

5.1.3. Error

	
class Error : public eprosima::statistics_backend::Exception

	Exception to signal a generic error that falls in no other specific category.

Public Functions

	
Error(const Error &other) = default

	Copies the statistics_backend::Error exception into a new one.

	Parameters

	other – The original exception object to copy

	
Error &operator=(const Error &other) = default

	Copies the statistics_backend::Error exception into the current one.

	Parameters

	other – The original statistics_backend::Error exception to copy

	Returns

	the current statistics_backend::Error exception after the copy

	
Exception(const char *message) noexcept

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const std::string &message)

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const Exception &other) = default

	Copies the statistics_backend::Exception object into a new one.

	Parameters

	other – The original exception object to copy

5.1.4. Exception

	
class Exception : public std::exception

	Base class for all exceptions thrown by the eProsima statistics backend library.

Subclassed by eprosima::statistics_backend::BadParameter, eprosima::statistics_backend::CorruptedFile, eprosima::statistics_backend::Error, eprosima::statistics_backend::Inconsistency, eprosima::statistics_backend::PreconditionNotMet, eprosima::statistics_backend::Unsupported

Public Functions

	
Exception(const char *message) noexcept

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const std::string &message)

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const Exception &other) = default

	Copies the statistics_backend::Exception object into a new one.

	Parameters

	other – The original exception object to copy

	
Exception &operator=(const Exception &other) = default

	Copies the statistics_backend::Exception object into the current one.

	Parameters

	other – The original exception object to copy

	Returns

	the current statistics_backend::Exception object after the copy

	
virtual const char *what() const noexcept override

	Returns the explanatory string of the exception.

	Returns

	Null-terminated string with the explanatory information

5.1.5. Inconsistency

	
class Inconsistency : public eprosima::statistics_backend::Exception

	Exception to signal that an inconsistency inside the database has been found.

Public Functions

	
Inconsistency(const Inconsistency &other) = default

	Copies the statistics_backend::Inconsistency exception into a new one.

	Parameters

	other – The original exception object to copy

	
Inconsistency &operator=(const Inconsistency &other) = default

	Copies the statistics_backend::Inconsistency exception into the current one.

	Parameters

	other – The original statistics_backend::Inconsistency exception to copy

	Returns

	the current statistics_backend::Inconsistency exception after the copy

	
Exception(const char *message) noexcept

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const std::string &message)

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const Exception &other) = default

	Copies the statistics_backend::Exception object into a new one.

	Parameters

	other – The original exception object to copy

5.1.6. PreconditionNotMet

	
class PreconditionNotMet : public eprosima::statistics_backend::Exception

	Exception to signal that an operation cannot be performed because the preconditions are not met.

Public Functions

	
PreconditionNotMet(const PreconditionNotMet &other) = default

	Copies the statistics_backend::PreconditionNotMet exception into a new one.

	Parameters

	other – The original exception object to copy

	
PreconditionNotMet &operator=(const PreconditionNotMet &other) = default

	Copies the statistics_backend::PreconditionNotMet exception into the current one.

	Parameters

	other – The original statistics_backend::PreconditionNotMet exception to copy

	Returns

	the current statistics_backend::PreconditionNotMet exception after the copy

	
Exception(const char *message) noexcept

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const std::string &message)

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const Exception &other) = default

	Copies the statistics_backend::Exception object into a new one.

	Parameters

	other – The original exception object to copy

5.1.7. Unsupported

	
class Unsupported : public eprosima::statistics_backend::Exception

	Exception to signal that an operation is not supported.

Public Functions

	
Unsupported(const Unsupported &other) = default

	Copies the statistics_backend::Unsupported exception into a new one.

	Parameters

	other – The original exception object to copy

	
Unsupported &operator=(const Unsupported &other) = default

	Copies the statistics_backend::Unsupported exception into the current one.

	Parameters

	other – The original statistics_backend::Unsupported exception to copy

	Returns

	the current statistics_backend::Unsupported exception after the copy

	
Exception(const char *message) noexcept

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const std::string &message)

	Construct a new statistics_backend::Exception object.

	Parameters

	message – The message to be returned by what()

	
Exception(const Exception &other) = default

	Copies the statistics_backend::Exception object into a new one.

	Parameters

	other – The original exception object to copy

5.2. Listener

	5.2.1. CallbackKind

	5.2.2. CallbackMask

	5.2.3. DomainListener

	5.2.4. PhysicalListener

5.2.1. CallbackKind

	
enum class eprosima::statistics_backend::CallbackKind : int32_t

	Each value identifies one of the user callbacks available on the library. These values can be combined with the ‘|’ operator to form a mask and configure which events are going to be notified to the user.

See also

CallbackMask

Values:

	
enumerator ON_TOPIC_DISCOVERY

	Represents the on_topic_discovery() callback.

	
enumerator ON_PARTICIPANT_DISCOVERY

	Represents the on_participant_discovery() callback.

	
enumerator ON_DATAWRITER_DISCOVERY

	Represents the on_datawriter_discovery() callback.

	
enumerator ON_DATAREADER_DISCOVERY

	Represents the on_datareader_discovery() callback.

	
enumerator ON_HOST_DISCOVERY

	Represents the on_host_discovery() callback.

	
enumerator ON_USER_DISCOVERY

	Represents the on_user_discovery() callback.

	
enumerator ON_PROCESS_DISCOVERY

	Represents the on_process_discovery() callback.

	
enumerator ON_LOCATOR_DISCOVERY

	Represents the on_locator_discovery() callback.

	
enumerator ON_DATA_AVAILABLE

	Represents the on_data_available() callback.

	
enumerator ON_DOMAIN_VIEW_GRAPH_UPDATE

	Represents the on_domain_view_graph_update() callback.

	
enumerator ON_STATUS_REPORTED

	Represents the on_status_reported() callback.

5.2.2. CallbackMask

	
using eprosima::statistics_backend::CallbackMask = Bitmask<CallbackKind>

	Bitmask of callback kinds.

values of CallbackKind can be combined with the ‘|’ operator to build the mask:

CallbackMask mask = CallbackKind::ON_DATAWRITER_DISCOVERY | CallbackKind::ON_DATAREADER_DISCOVERY;

See also

Bitmask

5.2.3. DomainListener

	
class DomainListener

	Subclassed by eprosima::statistics_backend::PhysicalListener

Public Functions

	
virtual ~DomainListener() = default

	Virtual destructor.

	
inline virtual void on_topic_discovery(EntityId domain_id, EntityId topic_id, const Status &status)

	This function is called when a new Topic is discovered by the library.

	Parameters

	
	domain_id – Entity ID of the domain in which the topic has been discovered.

	topic_id – Entity ID of the discovered topic.

	status – The status of the discovered topic.

	
inline virtual void on_participant_discovery(EntityId domain_id, EntityId participant_id, const Status &status)

	This function is called when a new DomainParticipant is discovered by the library, or a previously discovered DomainParticipant changes its QOS or is removed.

	Parameters

	
	domain_id – Entity ID of the domain in which the DataReader has been discovered.

	participant_id – Entity ID of the discovered DomainParticipant.

	status – The status of the discovered DomainParticipants.

	
inline virtual void on_datareader_discovery(EntityId domain_id, EntityId datareader_id, const Status &status)

	This function is called when a new DataReader is discovered by the library, or a previously discovered DataReader changes its QOS or is removed.

	Parameters

	
	domain_id – Entity ID of the domain in which the DataReader has been discovered.

	datareader_id – Entity ID of the discovered DataReader.

	status – The status of the discovered DataReaders.

	
inline virtual void on_datawriter_discovery(EntityId domain_id, EntityId datawriter_id, const Status &status)

	This function is called when a new DataWriter is discovered by the library, or a previously discovered DataWriter changes its QOS or is removed.

	Parameters

	
	domain_id – Entity ID of the domain in which the DataWriter has been discovered.

	datawriter_id – Entity ID of the discovered DataWriter.

	status – The status of the discovered DataWriters.

	
inline virtual void on_data_available(EntityId domain_id, EntityId entity_id, DataKind data_kind)

	This function is called when a new data sample is available.

	Parameters

	
	domain_id – Entity ID of the domain to which the data belongs.

	entity_id – Entity ID of the entity to which the data refers.

	data_kind – Data kind of the received data.

	
inline virtual void on_domain_view_graph_update(const EntityId &domain_id)

	This function is called when the database domain view graph is updated.

	Parameters

	domain_id – EntityId of the domain whose graph has been updated.

	
inline virtual void on_status_reported(EntityId domain_id, EntityId entity_id, StatusKind status_kind)

	This function is called when a new monitor service data sample is available.

	Parameters

	
	domain_id – Entity ID of the domain to which the data belongs.

	entity_id – Entity ID of the entity to which the data refers.

	status_kind – Status kind of the received data.

	
struct Status

	
Public Members

	
int32_t total_count = 0

	Total cumulative count of the entities discovered so far.

This value increases monotonically with every new discovered entity.

	
int32_t total_count_change = 0

	The change in total_count since the last time the listener was called.

This value can be positive, negative or zero, depending on the entity being discovered, undiscovered or only the QoS of the entity being changed since the last time the listener was called.

	
int32_t current_count = 0

	The number of currently discovered entities.

This value can only be positive or zero.

	
int32_t current_count_change = 0

	The change in current_count since the last time the listener was called.

This value can be positive, negative or zero, depending on the entity being discovered, undiscovered or only the QoS of the entity being changed since the last time the listener was called.

5.2.4. PhysicalListener

	
class PhysicalListener : public eprosima::statistics_backend::DomainListener

	
Public Functions

	
virtual ~PhysicalListener() = default

	Virtual destructor.

	
inline virtual void on_host_discovery(EntityId host_id, const Status &status)

	This function is called when a new Host is discovered by the library.

	Parameters

	
	host_id – Entity ID of the discovered Host.

	status – The status of the discovered Host.

	
inline virtual void on_user_discovery(EntityId user_id, const Status &status)

	This function is called when a new User is discovered by the library.

	Parameters

	
	user_id – Entity ID of the discovered User.

	status – The status of the discovered User.

	
inline virtual void on_process_discovery(EntityId process_id, const Status &status)

	This function is called when a new Process is discovered by the library.

	Parameters

	
	process_id – Entity ID of the discovered Process.

	status – The status of the discovered Process.

	
inline virtual void on_locator_discovery(EntityId locator_id, const Status &status)

	This function is called when a new Locator is discovered by the library.

	Parameters

	
	locator_id – Entity ID of the discovered Locator.

	status – The status of the discovered Locator.

5.3. StatisticsBackend

	
class StatisticsBackend

	
Public Functions

	
StatisticsBackend() = delete

	Deleted constructor, since the whole interface is static.

Public Static Functions

	
static void set_physical_listener(PhysicalListener *listener, CallbackMask callback_mask = CallbackMask::all(), DataKindMask data_mask = DataKindMask::none())

	Set the listener for the physical domain events.

Any physical listener already configured will be replaced by the new one. The provided pointer to the listener can be null, in which case, any physical listener already configured will be removed.

	Parameters

	
	listener – The listener with the callback implementations.

	callback_mask – Mask of the callbacks. Only the events that have the mask bit set will be informed.

	data_mask – Mask of the data types that will be monitored.

	
static EntityId init_monitor(DomainId domain, DomainListener *domain_listener = nullptr, CallbackMask callback_mask = CallbackMask::all(), DataKindMask data_mask = DataKindMask::none(), std::string app_id = app_id_str[(int)AppId::UNKNOWN], std::string app_metadata = "")

	Starts monitoring on a given domain.

This function creates a new statistics DomainParticipant that starts monitoring the requested domain ID.

	Parameters

	
	domain – The domain ID of the DDS domain to monitor.

	domain_listener – Listener with the callback to use to inform of events.

	callback_mask – Mask of the callbacks. Only the events that have the mask bit set will be informed.

	data_mask – Mask of the data types that will be monitored.

	app_id – App id of the monitor participant.

	app_metadata – Metadata of the monitor participant.

	Throws

	
	eprosima::statistics_backend::BadParameter – if a monitor is already created for the given domain.

	eprosima::statistics_backend::Error – if the creation of the monitor fails.

	Returns

	The ID of the created statistics Domain.

	
static EntityId init_monitor(std::string discovery_server_locators, DomainListener *domain_listener = nullptr, CallbackMask callback_mask = CallbackMask::all(), DataKindMask data_mask = DataKindMask::none(), std::string app_id = app_id_str[(int)AppId::UNKNOWN], std::string app_metadata = "")

	Starts monitoring the network corresponding to a server.

This function creates a new statistics DomainParticipant that starts monitoring the network of the server with the given locators. The server GuidPrefix_t is set to the default one: eprosima::fastdds::rtps::DEFAULT_ROS2_SERVER_GUIDPREFIX. If any other server is to be used, call the overload method that receives the GuidPrefix_t as parameter.

The format to specify a locator is: kind:[IP]:port, where:
	kind is one of { UDPv4, TCPv4, UDPv6, TCPv4 }

	IP is the IP address

	port is the IP port Note that SHM locators are not supported. For any server configured with shared memory locators, initialize the monitor using only the non shared memory locators.

	Parameters

	
	discovery_server_locators – The locator list of the server whose network is to be monitored, formatted as a semicolon separated list of locators.

	domain_listener – Listener with the callback to use to inform of events.

	callback_mask – Mask of the callbacks. Only the events that have the mask bit set will be informed.

	data_mask – Mask of the data types that will be monitored.

	app_id – App id of the monitor participant.

	app_metadata – Metadata of the monitor participant.

	Returns

	The ID of the created statistics Domain.

	
static EntityId init_monitor(std::string discovery_server_guid_prefix, std::string discovery_server_locators, DomainListener *domain_listener = nullptr, CallbackMask callback_mask = CallbackMask::all(), DataKindMask data_mask = DataKindMask::none(), std::string app_id = app_id_str[(int)AppId::UNKNOWN], std::string app_metadata = "")

	Starts monitoring the network corresponding to a server.

This function creates a new statistics DomainParticipant that starts monitoring the network of the server with the given GuidPrefix_t and with the given locators.

The format to specify a locator is: kind:[IP]:port, where:
	kind is one of { UDPv4, TCPv4, UDPv6, TCPv4 }

	IP is the IP address

	port is the IP port Note that SHM locators are not supported. For any server configured with shared memory locators, initialize the monitor using only the non shared memory locators.

	Parameters

	
	discovery_server_guid_prefix – Server GuidPrefix_t to be monitored.

	discovery_server_locators – The locator list of the server whose network is to be monitored, formatted as a semicolon separated list of locators.

	domain_listener – Listener with the callback to use to inform of events.

	callback_mask – Mask of the callbacks. Only the events that have the mask bit set will be informed.

	data_mask – Mask of the data types that will be monitored.

	app_id – App id of the monitor participant.

	app_metadata – Metadata of the monitor participant.

	Returns

	The ID of the created statistics Domain.

	
static void restart_monitor(EntityId monitor_id)

	Restarts a given monitor.

This function restarts a domain monitor. If the monitor is still active (meaning it has not being stopped), this function takes no effect.

	Parameters

	monitor_id – The entity ID of the monitor to restart.

	
static void stop_monitor(EntityId monitor_id)

	Stops a given monitor.

This function stops a domain monitor. After stopping, the statistical data related to the domain is still accessible.

	Parameters

	monitor_id – The entity ID of the monitor to stop.

	Throws

	eprosima::statistics_backend::BadParameter – if the given monitor ID is not yet registered.

	
static void clear_monitor(EntityId monitor_id)

	Clear the data of a domain given its monitor.

This function clears all the data related to a domain given its monitor ID. If the monitor is still active (meaning it has not being stopped), this functions takes no effect. After clearing, the statistical data related to the domain is deleted and therefore no longer accessible.

	Parameters

	monitor_id – The entity ID of the monitor to stop.

	
static void set_domain_listener(EntityId monitor_id, DomainListener *listener = nullptr, CallbackMask callback_mask = CallbackMask::all(), DataKindMask data_mask = DataKindMask::none())

	Set the listener of a monitor for the domain events.

Any domain listener already configured will be replaced by the new one. The provided pointer to the listener can be null, in which case, any domain listener already configured will be removed.

	Parameters

	
	monitor_id – The entity ID of the monitor.

	listener – The listener with the callback implementations.

	callback_mask – Mask of the callbacks. Only the events that have the mask bit set will be informed.

	data_mask – Mask of the data types that will be monitored.

	Throws

	eprosima::statistics_backend::BadParameter – if the given monitor ID is not yet registered.

	
static std::vector<EntityId> get_entities(EntityKind entity_type, EntityId entity_id = EntityId::all())

	Get all the entities of a given type related to another entity.

Get all the entity ids for every entity of kind entity_type that is connected with entity entity_id. Connection between entities means they are directly connected by a contained/connect relation (i.e. Host - User | Domain - Topic) or that connected entities are connected to it.

Use case: To get all host in the system, use arguments HOST and EntityId::all().

Use case: To get all locators from a participant with id X, use arguments LOCATOR and X, this will get all the locators that are connected with the endpoints this participant has.

In case the entity_id is not specified, all entities of type entity_type are returned.

	Parameters

	
	entity_type – The type of entities for which the search is performed.

	entity_id – The ID of the entity to which the resulting entities are related.

	Throws

	eprosima::statistics_backend::BadParameter – in the following cases:
	if the entity_kind is INVALID.

	if the entity_id does not reference a entity contained in the database or is not EntityId::all().

	if the EntityKind of the Entity with entity_id is INVALID.

	Returns

	All entities of type entity_type that are related to entity_id.

	
static bool is_active(EntityId entity_id)

	Returns whether the entity is active.

For monitors, active means that no call to stop_monitor() has been performed since the last time the monitor was activated. For the rest of entities, active means that there is statistical data being reported within the entity.

	Parameters

	entity_id – The ID of the entity whose activeness is requested.

	Returns

	true if active, false otherwise.

	
static bool is_metatraffic(EntityId entity_id)

	Returns whether the entity is related to a metatraffic topic.

For Topics, it is true when they are used for sharing metatraffic data. For DDSEndpoints, it is true when their associated to a metatraffic Topic. For the rest of entities, metatraffic is always false.

	Parameters

	entity_id – The ID of the entity whose metatraffic attribute is requested.

	Returns

	true if metatraffic, false otherwise.

	
static EntityKind get_type(EntityId entity_id)

	Returns the entity kind of a given id.

	Parameters

	entity_id – The ID of the entity whose type is requested.

	Throws

	eprosima::statistics_backend::BadParameter – if there is no entity with the given ID.

	Returns

	EntityKind of entity_id.

	
static StatusLevel get_status(EntityId entity_id)

	Returns the entity status of a given id.

	Parameters

	entity_id – The ID of the entity whose status is requested.

	Throws

	eprosima::statistics_backend::BadParameter – if there is no entity with the given ID.

	Returns

	StatusLevel of entity_id.

	
static Info get_info(EntityId entity_id)

	Get the meta information of a given entity.

	Parameters

	entity_id – The entity for which the meta information is retrieved.

	Returns

	Info object describing the entity’s meta information.

	
static std::vector<StatisticsData> get_data(DataKind data_type, const std::vector<EntityId> &entity_ids_source, const std::vector<EntityId> &entity_ids_target, uint16_t bins = 0, Timestamp t_from = the_initial_time(), Timestamp t_to = now(), StatisticKind statistic = StatisticKind::NONE)

	Provides access to the data measured during the monitoring.

Use this function for data types that relate to two entities, as described in DataType.

For data types that relate to a single entity, use the overloaded function that takes a single entity as argument.

t_from and t_to define the time interval for which the measurements will be returned. This time interval is further divided into bin segments of equal length, and a measurement is returned for each segment. Consequently, t_to should be greater than t_from by at least bin nanoseconds.
	Measurement time and intervals
	

If bin is zero, no statistic is calculated and the raw data values in the requested time interval are returned.

The kind of statistic calculated for each bin segment is indicated by statistic. In this implementation, if statistic is NONE, the first raw data point in the segment is returned.
	Statistics
	

See also

StatisticsBackend

	Parameters

	
	data_type – The type of the measurement being requested.

	entity_ids_source – Ids of the source entities of the requested data. These IDs must correspond to entities of specific kinds depending on the data_type.

	entity_ids_target – Ids of the target entities of the requested data. These IDs must correspond to entities of specific kinds depending on the data_type.

	bins – Number of time intervals in which the measurement time is divided.

	t_from – Starting time of the returned measures.

	t_to – Ending time of the returned measures.

	statistic – Statistic to calculate for each of the bins.

	Throws

	eprosima::statistics_backend::BadParameter – if the above preconditions are not met.

	Returns

	a vector of bin elements with the values of the requested statistic.

	
static std::vector<StatisticsData> get_data(DataKind data_type, const std::vector<EntityId> &entity_ids, uint16_t bins = 0, Timestamp t_from = the_initial_time(), Timestamp t_to = now(), StatisticKind statistic = StatisticKind::NONE)

	Provides access to the data measured during the monitoring.

Use this function for data types that relate to a single entity, as described in DataType.

For data types that relate to two entities, use the overloaded function that takes a source and a target entity as arguments.

t_from and t_to define the time interval for which the measurements will be returned. This time interval is further divided into bin segments of equal length, and a measurement is returned for each segment. Consequently, t_to should be greater than t_from by at least bin nanoseconds.
	Measurement time and intervals
	

If bin is zero, no statistic is calculated and the raw data values in the requested time interval are returned.

The kind of statistic calculated for each bin segment is indicated by statistic. In this implementation, if statistic is NONE, the first raw data point in the segment is returned.
	Statistics
	

See also

StatisticsBackend

	Parameters

	
	data_type – The type of the measurement being requested.

	entity_ids – Ids of the entities of the requested data. These IDs must correspond to entities of specific kinds depending on the data_type.

	bins – Number of time intervals in which the measurement time is divided.

	t_from – Starting time of the returned measures.

	t_to – Ending time of the returned measures.

	statistic – Statistic to calculate for each of the bins.

	Throws

	eprosima::statistics_backend::BadParameter – if the above preconditions are not met.

	Returns

	a vector of bin elements with the values of the requested statistic.

	
static std::vector<StatisticsData> get_data(DataKind data_type, const std::vector<EntityId> &entity_ids_source, const std::vector<EntityId> &entity_ids_target, uint16_t bins, StatisticKind statistic)

	Overload of get_data method without time arguments.

It calls the get_data method with the default time arguments. It is used to set the statistic argument with default time values.

	Parameters

	
	data_type – The type of the measurement being requested.

	entity_ids_source – Ids of the source entities of the requested data. These IDs must correspond to entities of specific kinds depending on the data_type.

	entity_ids_target – Ids of the target entities of the requested data. These IDs must correspond to entities of specific kinds depending on the data_type.

	bins – Number of time intervals in which the measurement time is divided.

	statistic – Statistic to calculate for each of the bins.

	Throws

	eprosima::statistics_backend::BadParameter – if the above preconditions are not met.

	Returns

	a vector of bin elements with the values of the requested statistic.

	
static std::vector<StatisticsData> get_data(DataKind data_type, const std::vector<EntityId> &entity_ids, uint16_t bins, StatisticKind statistic)

	Overload of get_data method without time arguments.

It calls the get_data method with the default time arguments. It is used to set the statistic argument with default time values.

	Parameters

	
	data_type – The type of the measurement being requested.

	entity_ids – Ids of the entities of the requested data. These IDs must correspond to entities of specific kinds depending on the data_type.

	bins – Number of time intervals in which the measurement time is divided.

	statistic – Statistic to calculate for each of the bins.

	Throws

	eprosima::statistics_backend::BadParameter – if the above preconditions are not met.

	Returns

	a vector of bin elements with the values of the requested statistic.

	
template<typename T>
static void get_status_data(const EntityId &entity_id, T &status_data)

	Get monitor service status data.

Default method is called if StatusKind is invalid.

	Parameters

	
	entity_id – The id of the Entity whose status info is requested.

	status_data – Status data to be filled.

	Throws

	eprosima::statistics_backend::BadParameter – in the following cases:
	if the entity_id does not reference a entity contained in the database.

	if there is no specialization template for the requested StatusKind.

	if the EntityKind of the Entity with entity_id doesn’t have the associated status_data.

	
static Graph get_domain_view_graph(const EntityId &domain_id)

	Get the domain view graph.

	Parameters

	domain_id – EntityId from domain whose graph is delivered.

	Throws

	eprosima::statistics_backend::BadParameter – if there is no graph for the specified domain id.

	Returns

	Graph object describing per domain topology of the entities.

	
static bool regenerate_domain_graph(const EntityId &domain_id)

	Regenerate graph from data stored in database.

	Parameters

	domain_id – EntityId from domain whose graph is regenerated.

	Returns

	True if the graph has been regenerated

	
static DatabaseDump dump_database(bool clear)

	Get a dump of the database.

	Parameters

	clear – If true, clear all the statistics data of all entities.

	Returns

	DatabaseDump object representing the backend database.

	
static void dump_database(const std::string &filename, bool clear)

	Dump Fast DDS Statistics Backend’s database to a file.

	Parameters

	
	filename – The name of the file where the database is dumped.

	clear – If true, clear all the statistics data of all entities.

	
static void load_database(const std::string &filename)

	Load Fast DDS Statistics Backend’s database from a file.

	Parameters

	filename – The name of the file from which where the database is loaded.

	Throws

	eprosima::statistics_backend::BadParameter – if the file does not exist.

	Pre

	The Backend’s database has no data. This means that no monitors were initialized since the Backend started, or that the Backend has been reset().

	
static void clear_statistics_data(const Timestamp &t_to = the_end_of_time())

	Clear statistics data of all entities received previous to the time given.

	Parameters

	t_to – Timestamp regarding the maximum time to stop removing data.

	
static void clear_inactive_entities()

	Remove all inactive entities from database.

	
static void reset()

	Resets the Fast DDS Statistics Backend.

After calling this method, the Fast DDS Statistics Backend reverts to its default state, as it was freshly started:
	All the data in the database is erased.

	All monitors are removed and cannot be restarted afterwards.

	The physical listener is removed.

	The physical listener callback mask is set to CallbackMask::none().

	The physical listener data mask is set to DataMask::none().

	Pre

	There are no active monitors. There can be inactive monitors.

	
static std::vector<std::pair<EntityKind, EntityKind>> get_data_supported_entity_kinds(DataKind data_kind)

	Return the EntityKind of the entities to which a DataKind refers.

Some DataKind relate to a single Entity of a given EntityKind. This is the case of SUBSCRIPTION_THROUGHPUT, that always relates to a DATAREADER. Other DataKind relate to two different Entity, each one of a given EntityKind. For example, FASTDDS_LATENCY relates to a DATAWRITER as source and a DATAREADER as target of the data flow. In the specific case of DISCOVERY_TIME, the DataKind relates to a PARTICIPANT as the discoverer, but can relate to a DATAWRITER, DATAREADER or another PARTICIPANT as the discovered entity.

Given a DataKind, this method provides a collection of all pairs of EntityKind to which this DataKind relates.

	For a DataKind that only relates to one Entity, the first element of the pair is the EntityKind of such Entity, while the second element is EntityKind::INVALID.

	For a DataKind that relates to two Entity, the first element of the pair is the EntityKind of the source Entity, while the second element is the EntityKind of the target Entity.

The source and target pairs returned by this method are exactly the accepted source and target EntityKind accepted by get_data for the given DataKind. This is convenient to prepare a call to get_data from an EntityKind. First, call get_data_supported_entity_kinds with the EntityKind to get the EntityKinds of the related entities. Then, call get_entities to get the available entities for that kind. Finally, call get_data with the pairs that get_entities returns.

i.e. Get the DISCOVERY_TIME of all entities on Host2 discovered by Host1: // Get all the EntityKind pairs related to DISCOVERY_TIME.
std::vector<std::pair<EntityKind, EntityKind>> types_list =
 StatisticsBackend::get_data_supported_entity_kinds(DataKind::DISCOVERY_TIME);

// Iterate over all the valid pairs composing the final result
std::vector<StatisticsData> discovery_times;
for (std::pair<EntityKind, EntityKind> type_pair : types_list)
{
 // Take the data for this pair and append it to the existing data
 std::vector<StatisticsData> tmp = StatisticsBackend::get_data(
 DataKind::DISCOVERY_TIME,
 StatisticsBackend::get_entities(type_pair.first, host1_id),
 StatisticsBackend::get_entities(type_pair.second, host2_id));

 discovery_times.insert(discovery_times.end(), tmp.begin(), tmp.end());
}

See also

DataKind

See also

get_data

	Parameters

	data_kind – Data kind.

	Returns

	list of EntityKind pairs with the entity kinds to which a DataKind refers.

	
static void set_alias(EntityId entity_id, const std::string &alias)

	Set a new alias for the entity.

	Parameters

	
	entity_id – The EntityId of the entity.

	alias – New alias that will replace the old one.

	Throws

	eprosima::statistics_backend::BadParameter – if there is no entity with the given ID.

5.4. Types

	5.4.1. Bitmask

	5.4.2. DataKind

	5.4.3. DataKindMask

	5.4.4. StatusKind

	5.4.5. DomainId

	5.4.6. EntityId

	5.4.7. EntityKind

	5.4.8. StatusLevel

	5.4.9. Graph

	5.4.10. Info

	5.4.11. StatisticKind

	5.4.12. StatisticsData

	5.4.13. StatusData

	5.4.14. Timestamp

	5.4.15. JSON Tags

5.4.1. Bitmask

	
template<typename E>
class Bitmask

	Generic bitmask for an enumerated type.

This class can be used as a companion bitmask of any enumerated type whose values have been constructed so that a single bit is set for each enum value. The enumerated values can be seen as the names of the bits in the bitmask.

Bitwise operations are defined between masks of the same type, between a mask and its companion enumeration, and between enumerated values.

enum my_enum
{
 RED = 1 << 0,
 GREEN = 1 << 1,
 BLUE = 1 << 2
};

// Combine enumerated labels to create a mask
Bitmask<my_enum> yellow_mask = RED | GREEN;

// Combine a mask with a value to create a new mask
Bitmask<my_enum> white_mask = yellow_mask | BLUE;

// Flip all the bits in the mask
Bitmask<my_enum> black_mask = ~white_mask;

// Set a bit in the mask
black_mask.set(RED);

// Test if a bit is set in the mask
bool is_red = white_mask.is_set(RED);

	Template Parameters

	E – The enumerated type for which the bitmask is constructed

5.4.2. DataKind

	
enum class eprosima::statistics_backend::DataKind : int32_t

	Indicates the Type of Data stored by the Backend | Signature | Entities source | Entity target | No. entities |
|-------------------------|-------------------|---------------|--------------|
| FASTDDS_LATENCY | DataWriter | DataReader | 2 |
| NETWORK_LATENCY | DomainParticipant | Locator | 2 |
| PUBLICATION_THROUGHPUT | DataWriter | | 1 |
| SUBSCRIPTION_THROUGHPUT | DataReader | | 1 |
| RTPS_PACKETS_SENT | DomainParticipant | Locator | 2 |
| RTPS_BYTES_SENT | DomainParticipant | Locator | 2 |
| RTPS_PACKETS_LOST | DomainParticipant | Locator | 2 |
| RTPS_BYTES_LOST | DomainParticipant | Locator | 2 |
| RESENT_DATA | DataWriter | | 1 |
| HEARTBEAT_COUNT | DataWriter | | 1 |
| ACKNACK_COUNT | DataReader | | 1 |
| NACKFRAG_COUNT | DataReader | | 1 |
| GAP_COUNT | DataWriter | | 1 |
| DATA_COUNT | DataWriter | | 1 |
| PDP_PACKETS | DomainParticipant | | 1 |
| EDP_PACKETS | DomainParticipant | | 1 |
| DISCOVERY_TIME | DomainParticipant | DDSEntity | 2 |
| SAMPLE_DATAS | DataWriter | | 1 |

Values:

	
enumerator INVALID

	Represents no valid data kind.

	
enumerator FASTDDS_LATENCY

	Latency between a write operation (writer side) and data available (notification to user in reader side)

	
enumerator NETWORK_LATENCY

	Latency between Locators pair.

	
enumerator PUBLICATION_THROUGHPUT

	Amount of data [Mb/s] sent by a DataWriter.

	
enumerator SUBSCRIPTION_THROUGHPUT

	Amount of data [Mb/s] received by a DataReader.

	
enumerator RTPS_PACKETS_SENT

	Amount of packets sent from a DDS Entity to a Locator.

	
enumerator RTPS_BYTES_SENT

	Amount of bytes sent from a DDS Entity to a Locator.

	
enumerator RTPS_PACKETS_LOST

	Amount of packets lost from a DDS Entity to a Locator.

	
enumerator RTPS_BYTES_LOST

	Amount of bytes lost from a DDS Entity to a Locator.

	
enumerator RESENT_DATA

	Amount of DATA/DATAFRAG sub-messages resent from a DataWriter/DomainParticipant.

	
enumerator HEARTBEAT_COUNT

	Amount of HEARTBEATs that each non discovery DataWriter/DomainParticipant sends.

	
enumerator ACKNACK_COUNT

	Amount of ACKNACKs that each non discovery DataReader/DomainParticipant sends.

	
enumerator NACKFRAG_COUNT

	Amount of NACKFRAGs that each non discovery DataReader/DomainParticipant sends.

	
enumerator GAP_COUNT

	Amount of GAPs sub-messages sent from a DataWriter/DomainParticipant.

	
enumerator DATA_COUNT

	Amount of DATA/DATAFRAG sub-messages that each non discovery DataWriter sends.

	
enumerator PDP_PACKETS

	Amount of PDP packets sent by Participant.

	
enumerator EDP_PACKETS

	Amount of EDP packets sent by Participant.

	
enumerator DISCOVERY_TIME

	Time when a DDS Entity discovers another DDS entity.

	
enumerator SAMPLE_DATAS

	Amount of DATA/DATAFRAG sub-messages needed to send a single sample.

5.4.3. DataKindMask

	
using eprosima::statistics_backend::DataKindMask = Bitmask<DataKind>

	Bitmask of data kinds.

values of DataKind can be combined with the ‘|’ operator to build the mask:

DataKindMask mask = DataKind::PUBLICATION_THROUGHPUT | DataKind::SUBSCRIPTION_THROUGHPUT;

See also

Bitmask

5.4.4. StatusKind

	
enum class eprosima::statistics_backend::StatusKind : int32_t

	Indicates the Type of Monitor Service Status Data stored by the Backend

Values:

	
enumerator INVALID

	Represents no valid status data kind.

	
enumerator PROXY

	Collection of Parameters describing the Proxy Data of that entity.

	
enumerator CONNECTION_LIST

	List of connections that this entity is using. Described here in more detail.

	
enumerator INCOMPATIBLE_QOS

	Status of the Incompatible QoS of that entity.

	
enumerator INCONSISTENT_TOPIC

	Status of Inconsistent topics of the topic of that entity.

	
enumerator LIVELINESS_LOST

	Tracks the status of the number of times that liveliness was lost (writer side).

	
enumerator LIVELINESS_CHANGED

	Tracks the status of the number of times that liveliness status changed (reader side).

	
enumerator DEADLINE_MISSED

	The Status of the number of deadlines missed that were registered in that entity.

	
enumerator SAMPLE_LOST

	Tracks the number of times that this entity lost samples.

	
enumerator STATUSES_SIZE

	

5.4.5. DomainId

	
using eprosima::statistics_backend::DomainId = uint32_t

	Type DDS Domain IDs

5.4.6. EntityId

	
class EntityId

	
Public Functions

	
EntityId() noexcept

	Instantiate an EntityId. The internal value is set to EntityId::invalid.

	
EntityId(int64_t value) noexcept

	Instantiate an EntityId from an integer.

	Parameters

	value – The value to use as internal value on the EntityId

	
EntityId(EntityId &&entity_id) noexcept = default

	Move constructor.

	Parameters

	entity_id – The moved EntityId

	
EntityId(const EntityId &entity_id) noexcept = default

	Copy constructor.

	Parameters

	entity_id – The copied EntityId

	
EntityId &operator=(const EntityId &entity_id) noexcept = default

	Copy assignment operator.

	Parameters

	entity_id – The assigned EntityId

	
EntityId &operator=(EntityId &&entity_id) noexcept = default

	Move assignment operator.

	Parameters

	entity_id – The assigned EntityId

	
void invalidate() noexcept

	Invalidate an EntityId.

	Post

	is_valid() returns false

	
bool is_valid() const noexcept

	Check whether an EntityId is valid.

	Returns

	True if valid, false otherwise

	
bool is_all() const noexcept

	Check whether an EntityId is the ID representing all entities.

	Returns

	True if is ENTITY_ID_ALL, false otherwise

	
bool is_valid_and_unique() const noexcept

	Check whether an EntityId is an ID representing one specific entity.

	Returns

	True if it is valid and not ENTITY_ID_ALL, false otherwise

	
int64_t value() const noexcept

	Get the internal value of the EntityId.

	Returns

	An int64_t with the representing internal value

Public Static Functions

	
static EntityId all() noexcept

	Get the EntityId to refer all entities at once.

	Returns

	An ID that refers all entities.

	
static EntityId invalid() noexcept

	Get an invalid EntityId.

	Returns

	An ID that is invalid

	
inline std::ostream &eprosima::statistics_backend::operator<<(std::ostream &output, const EntityId &entity_id)

	Serialize an EntityId to std::ostream.

	Parameters

	
	output – The output std::ostream

	entity_id – The EntityId to serialize

	
inline bool eprosima::statistics_backend::operator<(const EntityId &entity_id_1, const EntityId &entity_id_2)

	Check whether an EntityId is smaller than another one.

	Parameters

	
	entity_id_1 – The left-side of the operation

	entity_id_2 – The right-side of the operation

	
inline bool eprosima::statistics_backend::operator<=(const EntityId &entity_id_1, const EntityId &entity_id_2)

	Check whether an EntityId is smaller or equal than another one.

	Parameters

	
	entity_id_1 – The left-side of the operation

	entity_id_2 – The right-side of the operation

	
inline bool eprosima::statistics_backend::operator>(const EntityId &entity_id_1, const EntityId &entity_id_2)

	Check whether an EntityId is greater than another one.

	Parameters

	
	entity_id_1 – The left-side of the operation

	entity_id_2 – The right-side of the operation

	
inline bool eprosima::statistics_backend::operator>=(const EntityId &entity_id_1, const EntityId &entity_id_2)

	Check whether an EntityId is greater or equal than another one.

	Parameters

	
	entity_id_1 – The left-side of the operation

	entity_id_2 – The right-side of the operation

	
inline bool eprosima::statistics_backend::operator==(const EntityId &entity_id_1, const EntityId &entity_id_2)

	Check whether an EntityId is equal to another one.

	Parameters

	
	entity_id_1 – The left-side of the operation

	entity_id_2 – The right-side of the operation

	
inline bool eprosima::statistics_backend::operator!=(const EntityId &entity_id_1, const EntityId &entity_id_2)

	Check whether an EntityId is different than another one.

	Parameters

	
	entity_id_1 – The left-side of the operation

	entity_id_2 – The right-side of the operation

5.4.7. EntityKind

	
enum class eprosima::statistics_backend::EntityKind

	Indicates the Type of an Entity in Statistics Backend structure

Values:

	
enumerator INVALID

	Invalid entity kind.

	
enumerator HOST

	Host/Machine where a participant is allocated.

	
enumerator USER

	User that has executed a participant.

	
enumerator PROCESS

	Process where a participant is running.

	
enumerator DOMAIN

	Abstract DDS network by Domain or by Discovery Server.

	
enumerator TOPIC

	DDS Topic.

	
enumerator PARTICIPANT

	DDS Domain Participant.

	
enumerator DATAWRITER

	DDS DataWriter.

	
enumerator DATAREADER

	DDS DataReader.

	
enumerator LOCATOR

	Physical locator that a communication is using (IP + port || SHM + port) Store the Locator Statistic data

5.4.8. StatusLevel

	
enum class eprosima::statistics_backend::StatusLevel

	Indicates the Status level in Statistics Backend structure

Values:

	
enumerator OK_STATUS

	Ok entity status.

	
enumerator WARNING_STATUS

	Warning entity status.

	
enumerator ERROR_STATUS

	Error entity status.

5.4.9. Graph

	
using eprosima::statistics_backend::Graph = nlohmann::json

	Topology graph tree structure. Please refer to https://nlohmann.github.io/json/doxygen/index.html

5.4.10. Info

	
using eprosima::statistics_backend::Info = nlohmann::json

	Info tree structure. Please refer to https://nlohmann.github.io/json/doxygen/index.html

5.4.11. StatisticKind

	
enum class eprosima::statistics_backend::StatisticKind

	Values:

	
enumerator NONE

	Non accumulative kind, it chooses a data point between the set given. Implemented to take the first data in set : [0]

	
enumerator MEAN

	Numerical mean of values in the set.

	
enumerator STANDARD_DEVIATION

	Standard Deviation of the values in the set.

	
enumerator MAX

	Maximum value in the set.

	
enumerator MIN

	Minimum value in the set.

	
enumerator MEDIAN

	Median value of the set.

	
enumerator COUNT

	Amount of values in the set.

	
enumerator SUM

	Summation of the values in the set.

5.4.12. StatisticsData

	
using eprosima::statistics_backend::StatisticsData = std::pair<Timestamp, double>

	Type of the data returned by the backend.

The first field represents the time at which the data was recorded. This can be the time of the raw data point if no bins are being used, or the starting time of the bin (see get_data()).

The second field represents the data value itself. This will be the value of the calculated statistic, or the raw data if no statistic has been requested (see get_data()).

See also

get_data()

5.4.13. StatusData

	
struct MonitorServiceSample

	Base class for all monitor service status samples. It adds the timepoint and status level to the sample

See also

get_status_data()

Subclassed by eprosima::statistics_backend::ConnectionListSample, eprosima::statistics_backend::DeadlineMissedSample, eprosima::statistics_backend::IncompatibleQosSample, eprosima::statistics_backend::InconsistentTopicSample, eprosima::statistics_backend::LivelinessChangedSample, eprosima::statistics_backend::LivelinessLostSample, eprosima::statistics_backend::ProxySample, eprosima::statistics_backend::SampleLostSample

	
struct ProxySample : public eprosima::statistics_backend::MonitorServiceSample

	Proxy data sample of an entity.

	
struct ConnectionListSample : public eprosima::statistics_backend::MonitorServiceSample

	Connection list sample of an entity. Each of the elements is a Connection in which the possible values for the ConnectionMode are: intraprocess, data sharing, transport.

	
struct IncompatibleQosSample : public eprosima::statistics_backend::MonitorServiceSample

	Incompatible Qos sample of an entity:
	DataWriter Incompatible QoS Offered

	DataReader Incompatible QoS Requested.

	
struct InconsistentTopicSample : public eprosima::statistics_backend::MonitorServiceSample

	Inconsistent topic sample of the topic of that entity. Asked to the topic of the requested entity.

	
struct LivelinessLostSample : public eprosima::statistics_backend::MonitorServiceSample

	Liveliness lost sample containing the number of times that liveliness was lost by a DataWriter.

	
struct LivelinessChangedSample : public eprosima::statistics_backend::MonitorServiceSample

	Liveliness changed sample containing the number of times that liveliness status changed in a DataReader.

	
struct DeadlineMissedSample : public eprosima::statistics_backend::MonitorServiceSample

	Deadline missed sample containing the number of deadlines missed that were registered in that entity.

	
struct SampleLostSample : public eprosima::statistics_backend::MonitorServiceSample

	Sample lost sample containing the number of times that this entity lost samples.

5.4.14. Timestamp

	
using eprosima::statistics_backend::Timestamp = std::chrono::time_point<std::chrono::system_clock>

	Type used to represent time points

5.4.15. JSON Tags

	
constexpr const char *eprosima::statistics_backend::ACTUAL_DUMP_VERSION = "0.0"

	Actual version of the Database Dump.

Release Notes

Version 1.1.0

This release includes the following updates:

	Use Fast DDS builtin transports by default.

	Regenerate types with Fast DDS-Gen v3.3.0.

	Bump gitpython dependency for documentation.

	Include SustainML nodes as recognized app.

	Relocate statistics topics static map.

This release includes the following bugfixes:

	Fix build error when log info enabled

This release includes the following dependencies update:

	
	Repository

	Old Version

	New Version

	Foonathan Memory Vendor

	eProsima/foonathan_memory_vendor [https://github.com/eProsima/foonathan_memory_vendor]

	v1.3.1 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1]

	v1.3.1 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1]

	Fast CDR

	eProsima/Fast-CDR [https://github.com/eProsima/Fast-CDR]

	v2.1.2 [https://github.com/eProsima/Fast-CDR/releases/tag/v2.1.2]

	v2.2.0 [https://github.com/eProsima/Fast-CDR/releases/tag/v2.2.0]

	Fast DDS

	eProsima/Fast-DDS [https://github.com/eProsima/Fast-DDS]

	v2.13.0 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.13.0]

	v2.14.0 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.14.0]

	Fast DDS Gen

	eProsima/Fast-DDS-Gen [https://github.com/eProsima/Fast-DDS-Gen]

	v3.0.0 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v3.0.0]

	v3.3.0 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v3.3.0]

	IDL Parser

	eProsima/IDL-Parser [https://github.com/eProsima/IDL-Parser.git]

	v1.7.2 [https://github.com/eProsima/IDL-Parser/releases/tag/v1.7.2]

	v3.0.0 [https://github.com/eProsima/IDL-Parser/releases/tag/v3.0.0]

Previous versions

Version 1.0.0

This release includes the following API extensions:

	StatisticsBackend::get_status returns the entity status level of a given id.

	StatisticsBackend::get_info returns domain participant and endpoint app info.

	StatisticsBackend::get_domain_view_graph returns the domain view graph of a given domain.

	StatisticsBackend::regenerate_domain_graph regenerates the domain view graph of a given domain.

	StatisticsBackend::get_status_data returns an specific status data of a given id.

	Added status attribute for entities.

	Added database domain_view_graph map.

	Added monitor service topic status data storing and processing.

	Retrieve physical information from discovery packets.

	Physical related entities with an empty name are given the name Unknown by default.

This release includes the following dependencies update:

	
	Repository

	Old Version

	New Version

	Foonathan Memory Vendor

	eProsima/foonathan_memory_vendor [https://github.com/eProsima/foonathan_memory_vendor]

	v1.3.1 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1]

	v1.3.1 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1]

	Fast CDR

	eProsima/Fast-CDR [https://github.com/eProsima/Fast-CDR]

	v1.1.0 [https://github.com/eProsima/Fast-CDR/releases/tag/v1.1.0]

	v2.1.2 [https://github.com/eProsima/Fast-CDR/releases/tag/v2.1.2]

	Fast DDS

	eProsima/Fast-DDS [https://github.com/eProsima/Fast-DDS]

	v2.11.0 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.11.0]

	v2.13.0 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.13.0]

	Fast DDS Gen

	eProsima/Fast-DDS-Gen [https://github.com/eProsima/Fast-DDS-Gen]

	v2.5.1 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v2.5.1]

	v3.0.0 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v3.0.0]

	IDL Parser

	eProsima/IDL-Parser [https://github.com/eProsima/IDL-Parser.git]

	v1.6.0 [https://github.com/eProsima/IDL-Parser/releases/tag/v1.6.0]

	v1.7.2 [https://github.com/eProsima/IDL-Parser/releases/tag/v1.7.2]

Version 0.11.0

This release includes the following update:

	Regenerate TypeSupport with Fast DDS-Gen v2.5.1.

This release includes the following bugfix:

	Remove obsolete warning in documentation.
Fast DDS v2.9.0 changed the default behavior by building with FASTDDS_STATISTICS enabled by default.

This release includes the following dependencies update:

	
	Repository

	Old Version

	New Version

	Foonathan Memory Vendor

	eProsima/foonathan_memory_vendor [https://github.com/eProsima/foonathan_memory_vendor]

	v1.3.0 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.0]

	v1.3.1 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1]

	Fast CDR

	eProsima/Fast-CDR [https://github.com/eProsima/Fast-CDR]

	v1.0.27 [https://github.com/eProsima/Fast-CDR/releases/tag/v1.0.27]

	v1.1.0 [https://github.com/eProsima/Fast-CDR/releases/tag/v1.1.0]

	Fast DDS

	eProsima/Fast-DDS [https://github.com/eProsima/Fast-DDS]

	v2.10.1 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.10.1]

	v2.11.0 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.11.0]

	Fast DDS Gen

	eProsima/Fast-DDS-Gen [https://github.com/eProsima/Fast-DDS-Gen]

	v2.4.0 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v2.4.0]

	v2.5.1 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v2.5.1]

	IDL Parser

	eProsima/IDL-Parser [https://github.com/eProsima/IDL-Parser.git]

	v1.5.0 [https://github.com/eProsima/IDL-Parser/releases/tag/v1.5.0]

	v1.6.0 [https://github.com/eProsima/IDL-Parser/releases/tag/v1.6.0]

Version 0.10.0

This release includes the following feature:

	Extend method clear_statistics_data to remove internal statistical data previous to a time given.

Version 0.9.0

This release includes the following improvements:

	Regenerate TypeSupport with Fast DDS-Gen v2.4.0.

This release includes the following bugfixes:

	Fix documentation dependencies security vulnerabilities.

	Install fixed gcovr version.

	Fix build issues adding ignored Info statuses.

Version 0.8.0

This release includes the following features:

	New API to clear statistic data and remove inactive entities from database.

This release includes the following improvements:

	CI improvements:

	Include address-sanitizer job.

	Flaky tests are run in a specific job.

	Internal implementation improvements:

	Remove database unused collections.

	Smart pointers refactor using unique instead of shared pointers.

	Example:

	Improve example including new API.

This release includes the following bugfixes:

	Memory leaks fixes reported by address-sanitizer.

Version 0.7.1

This release adds the following improvements:

	Update python dependencies for building the documentation

	Re-generate Fast DDS-Gen generated TypeSupport with Fast DDS-Gen v2.2.0

	Example to export ROS 2 statistics to Prometheus

Version 0.7.0

This release adds the following feature:

	Possibility of loading Fast DDS Statistics Backend’s DomainParticipant from Fast DDS XML configuration files.

This release adds the following improvements:

	Warn the user the Fast DDS Statistics module needs to be enabled.

	Update documentation regarding locator specification.

	Fix destruction error in the Database’s queue thread.

Version 0.6.0

This release adds the following improvement:

	Update statistics type support including physical data in DISCOVERY_TOPIC

Version 0.5.0

This release adds the following improvements:

	Improvements on Windows CI

	Refactor on processing queues to avoid data races with entity creation order

	Update Statistics Module type support

Version 0.4.0

This release has the following API extensions:

	StatisticsBackend::is_metatraffic allows the user to know if a specific topic or endpoint is related to metatraffic
data.

This release adds the following features:

	Add HelloWorld Example.

This release includes the following bug fixes and improvements:

	Return the end of the time interval as the data point’s timestamps instead of the initial one.

	Avoid adding the same locator twice to the database.

	Fix deadlock when accessing the database within a callback implementation.

	Avoid using deprecated namespace.

	Improvements on CI.

Version 0.3.0

This release has the following API breaks:

	StatisticsBackend::dump_database methods now have an additional argument clear.

This release adds the following features:

	Dumping the database can optionally delete the traffic data from the internal data structures
after the dump is completed, in order to reduce memory footprint.

	Support to create monitors on discovery server networks.

	Statistics data related to meta-traffic are now collected under the builtin meta-traffic endpoint
created on each participant.

	Entities removed from the network now have a non-active status.

	Transitions between active and non-active status are notified to the user listeners.

	It is possible to change the domain listener and mask after the monitor is created.

This release includes the following bug fixes and improvements:

	By default, statistics data is received using UDP transport, shared memory is disabled.

	Network latency data now relates to a source participant and a destination locator
(previously a source locator and a destination locator).

	Statistics data can now trigger the discovery of a new locator.

	Improved entity names and aliases to be more user friendly.

	Solved an issue that may cause the internal database to freeze.

	Allow for topics with the same name to be on different domains.

Version 0.2.0

This minor release is API compatible with the previous minor release, but introduces ABI breaks:

	Methods and attributes have been added on several classes, so indexes of
symbols on dynamic libraries may have changed.

This release adds the following features:

	Support for Windows platforms

	Dumped data can now be loaded to the backend

	Backend can now be reset to a clean state (deleting all the data and monitors)

	StatisticsBackend::get_data implementation for SAMPLE_DATAS and DISCOVERY_TIME sample types

	StatisticsBackend::get_data implementation for zero bins

It also includes the following improvements:

	The participant info now contains all the locators of the participant

	Entities have an alias that can be set by the user to facilitate identification

Some important bugfixes are also included:

	Fixed errors when the same topic name is used on different domains

	Fixed crashes on database queues when database operation fails

Version 0.1.0

This first release includes the following features:

	Starting and stopping monitoring a DDS domain ID

	Keeping track of discovered entities (hosts, users, processes, participants,
topics, data readers, data writers, and locators).

	Listening and recording statistics data related to the discovered entities,
as reported by the Fast DDS statistics module.

	Retrieving the recorded statistics data, preprocessed with the requested statistic
(mean, standard deviation, maximum, minimum, median)

	Persisting the recorded statistics to a file.

	Loading the statistics from a persisted file.

Index

 E

E

 	
 	eprosima::statistics_backend::ACTUAL_DUMP_VERSION (C++ member)

 	eprosima::statistics_backend::BadParameter (C++ class)

 	eprosima::statistics_backend::BadParameter::BadParameter (C++ function)

 	eprosima::statistics_backend::BadParameter::Exception (C++ function), [1], [2]

 	eprosima::statistics_backend::BadParameter::operator= (C++ function)

 	eprosima::statistics_backend::Bitmask (C++ class)

 	eprosima::statistics_backend::CallbackKind (C++ enum)

 	eprosima::statistics_backend::CallbackKind::ON_DATA_AVAILABLE (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_DATAREADER_DISCOVERY (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_DATAWRITER_DISCOVERY (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_DOMAIN_VIEW_GRAPH_UPDATE (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_HOST_DISCOVERY (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_LOCATOR_DISCOVERY (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_PARTICIPANT_DISCOVERY (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_PROCESS_DISCOVERY (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_STATUS_REPORTED (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_TOPIC_DISCOVERY (C++ enumerator)

 	eprosima::statistics_backend::CallbackKind::ON_USER_DISCOVERY (C++ enumerator)

 	eprosima::statistics_backend::CallbackMask (C++ type)

 	eprosima::statistics_backend::ConnectionListSample (C++ struct)

 	eprosima::statistics_backend::CorruptedFile (C++ class)

 	eprosima::statistics_backend::CorruptedFile::CorruptedFile (C++ function)

 	eprosima::statistics_backend::CorruptedFile::Exception (C++ function), [1], [2]

 	eprosima::statistics_backend::CorruptedFile::operator= (C++ function)

 	eprosima::statistics_backend::DataKind (C++ enum)

 	eprosima::statistics_backend::DataKind::ACKNACK_COUNT (C++ enumerator)

 	eprosima::statistics_backend::DataKind::DATA_COUNT (C++ enumerator)

 	eprosima::statistics_backend::DataKind::DISCOVERY_TIME (C++ enumerator)

 	eprosima::statistics_backend::DataKind::EDP_PACKETS (C++ enumerator)

 	eprosima::statistics_backend::DataKind::FASTDDS_LATENCY (C++ enumerator)

 	eprosima::statistics_backend::DataKind::GAP_COUNT (C++ enumerator)

 	eprosima::statistics_backend::DataKind::HEARTBEAT_COUNT (C++ enumerator)

 	eprosima::statistics_backend::DataKind::INVALID (C++ enumerator)

 	eprosima::statistics_backend::DataKind::NACKFRAG_COUNT (C++ enumerator)

 	eprosima::statistics_backend::DataKind::NETWORK_LATENCY (C++ enumerator)

 	eprosima::statistics_backend::DataKind::PDP_PACKETS (C++ enumerator)

 	eprosima::statistics_backend::DataKind::PUBLICATION_THROUGHPUT (C++ enumerator)

 	eprosima::statistics_backend::DataKind::RESENT_DATA (C++ enumerator)

 	eprosima::statistics_backend::DataKind::RTPS_BYTES_LOST (C++ enumerator)

 	eprosima::statistics_backend::DataKind::RTPS_BYTES_SENT (C++ enumerator)

 	eprosima::statistics_backend::DataKind::RTPS_PACKETS_LOST (C++ enumerator)

 	eprosima::statistics_backend::DataKind::RTPS_PACKETS_SENT (C++ enumerator)

 	eprosima::statistics_backend::DataKind::SAMPLE_DATAS (C++ enumerator)

 	eprosima::statistics_backend::DataKind::SUBSCRIPTION_THROUGHPUT (C++ enumerator)

 	eprosima::statistics_backend::DataKindMask (C++ type)

 	eprosima::statistics_backend::DeadlineMissedSample (C++ struct)

 	eprosima::statistics_backend::DomainId (C++ type)

 	eprosima::statistics_backend::DomainListener (C++ class)

 	eprosima::statistics_backend::DomainListener::on_data_available (C++ function)

 	eprosima::statistics_backend::DomainListener::on_datareader_discovery (C++ function)

 	eprosima::statistics_backend::DomainListener::on_datawriter_discovery (C++ function)

 	eprosima::statistics_backend::DomainListener::on_domain_view_graph_update (C++ function)

 	eprosima::statistics_backend::DomainListener::on_participant_discovery (C++ function)

 	eprosima::statistics_backend::DomainListener::on_status_reported (C++ function)

 	eprosima::statistics_backend::DomainListener::on_topic_discovery (C++ function)

 	eprosima::statistics_backend::DomainListener::Status (C++ struct)

 	eprosima::statistics_backend::DomainListener::Status::current_count (C++ member)

 	eprosima::statistics_backend::DomainListener::Status::current_count_change (C++ member)

 	eprosima::statistics_backend::DomainListener::Status::total_count (C++ member)

 	eprosima::statistics_backend::DomainListener::Status::total_count_change (C++ member)

 	eprosima::statistics_backend::DomainListener::~DomainListener (C++ function)

 	eprosima::statistics_backend::EntityId (C++ class)

 	eprosima::statistics_backend::EntityId::all (C++ function)

 	eprosima::statistics_backend::EntityId::EntityId (C++ function), [1], [2], [3]

 	eprosima::statistics_backend::EntityId::invalid (C++ function)

 	eprosima::statistics_backend::EntityId::invalidate (C++ function)

 	eprosima::statistics_backend::EntityId::is_all (C++ function)

 	eprosima::statistics_backend::EntityId::is_valid (C++ function)

 	eprosima::statistics_backend::EntityId::is_valid_and_unique (C++ function)

 	eprosima::statistics_backend::EntityId::operator= (C++ function), [1]

 	eprosima::statistics_backend::EntityId::value (C++ function)

 	eprosima::statistics_backend::EntityKind (C++ enum)

 	eprosima::statistics_backend::EntityKind::DATAREADER (C++ enumerator)

 	eprosima::statistics_backend::EntityKind::DATAWRITER (C++ enumerator)

 	eprosima::statistics_backend::EntityKind::DOMAIN (C++ enumerator)

 	eprosima::statistics_backend::EntityKind::HOST (C++ enumerator)

 	eprosima::statistics_backend::EntityKind::INVALID (C++ enumerator)

 	eprosima::statistics_backend::EntityKind::LOCATOR (C++ enumerator)

 	eprosima::statistics_backend::EntityKind::PARTICIPANT (C++ enumerator)

 	eprosima::statistics_backend::EntityKind::PROCESS (C++ enumerator)

 	eprosima::statistics_backend::EntityKind::TOPIC (C++ enumerator)

 	eprosima::statistics_backend::EntityKind::USER (C++ enumerator)

 	eprosima::statistics_backend::Error (C++ class)

 	eprosima::statistics_backend::Error::Error (C++ function)

 	eprosima::statistics_backend::Error::Exception (C++ function), [1], [2]

 	eprosima::statistics_backend::Error::operator= (C++ function)

 	eprosima::statistics_backend::Exception (C++ class)

 	
 	eprosima::statistics_backend::Exception::Exception (C++ function), [1], [2]

 	eprosima::statistics_backend::Exception::operator= (C++ function)

 	eprosima::statistics_backend::Exception::what (C++ function)

 	eprosima::statistics_backend::Graph (C++ type)

 	eprosima::statistics_backend::IncompatibleQosSample (C++ struct)

 	eprosima::statistics_backend::Inconsistency (C++ class)

 	eprosima::statistics_backend::Inconsistency::Exception (C++ function), [1], [2]

 	eprosima::statistics_backend::Inconsistency::Inconsistency (C++ function)

 	eprosima::statistics_backend::Inconsistency::operator= (C++ function)

 	eprosima::statistics_backend::InconsistentTopicSample (C++ struct)

 	eprosima::statistics_backend::Info (C++ type)

 	eprosima::statistics_backend::LivelinessChangedSample (C++ struct)

 	eprosima::statistics_backend::LivelinessLostSample (C++ struct)

 	eprosima::statistics_backend::MonitorServiceSample (C++ struct)

 	eprosima::statistics_backend::operator!= (C++ function)

 	eprosima::statistics_backend::operator< (C++ function)

 	eprosima::statistics_backend::operator<< (C++ function)

 	eprosima::statistics_backend::operator<= (C++ function)

 	eprosima::statistics_backend::operator== (C++ function)

 	eprosima::statistics_backend::operator> (C++ function)

 	eprosima::statistics_backend::operator>= (C++ function)

 	eprosima::statistics_backend::PhysicalListener (C++ class)

 	eprosima::statistics_backend::PhysicalListener::on_host_discovery (C++ function)

 	eprosima::statistics_backend::PhysicalListener::on_locator_discovery (C++ function)

 	eprosima::statistics_backend::PhysicalListener::on_process_discovery (C++ function)

 	eprosima::statistics_backend::PhysicalListener::on_user_discovery (C++ function)

 	eprosima::statistics_backend::PhysicalListener::~PhysicalListener (C++ function)

 	eprosima::statistics_backend::PreconditionNotMet (C++ class)

 	eprosima::statistics_backend::PreconditionNotMet::Exception (C++ function), [1], [2]

 	eprosima::statistics_backend::PreconditionNotMet::operator= (C++ function)

 	eprosima::statistics_backend::PreconditionNotMet::PreconditionNotMet (C++ function)

 	eprosima::statistics_backend::ProxySample (C++ struct)

 	eprosima::statistics_backend::SampleLostSample (C++ struct)

 	eprosima::statistics_backend::StatisticKind (C++ enum)

 	eprosima::statistics_backend::StatisticKind::COUNT (C++ enumerator)

 	eprosima::statistics_backend::StatisticKind::MAX (C++ enumerator)

 	eprosima::statistics_backend::StatisticKind::MEAN (C++ enumerator)

 	eprosima::statistics_backend::StatisticKind::MEDIAN (C++ enumerator)

 	eprosima::statistics_backend::StatisticKind::MIN (C++ enumerator)

 	eprosima::statistics_backend::StatisticKind::NONE (C++ enumerator)

 	eprosima::statistics_backend::StatisticKind::STANDARD_DEVIATION (C++ enumerator)

 	eprosima::statistics_backend::StatisticKind::SUM (C++ enumerator)

 	eprosima::statistics_backend::StatisticsBackend (C++ class)

 	eprosima::statistics_backend::StatisticsBackend::clear_inactive_entities (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::clear_monitor (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::clear_statistics_data (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::dump_database (C++ function), [1]

 	eprosima::statistics_backend::StatisticsBackend::get_data (C++ function), [1], [2], [3]

 	eprosima::statistics_backend::StatisticsBackend::get_data_supported_entity_kinds (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::get_domain_view_graph (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::get_entities (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::get_info (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::get_status (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::get_status_data (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::get_type (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::init_monitor (C++ function), [1], [2]

 	eprosima::statistics_backend::StatisticsBackend::is_active (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::is_metatraffic (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::load_database (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::regenerate_domain_graph (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::reset (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::restart_monitor (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::set_alias (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::set_domain_listener (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::set_physical_listener (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::StatisticsBackend (C++ function)

 	eprosima::statistics_backend::StatisticsBackend::stop_monitor (C++ function)

 	eprosima::statistics_backend::StatisticsData (C++ type)

 	eprosima::statistics_backend::StatusKind (C++ enum)

 	eprosima::statistics_backend::StatusKind::CONNECTION_LIST (C++ enumerator)

 	eprosima::statistics_backend::StatusKind::DEADLINE_MISSED (C++ enumerator)

 	eprosima::statistics_backend::StatusKind::INCOMPATIBLE_QOS (C++ enumerator)

 	eprosima::statistics_backend::StatusKind::INCONSISTENT_TOPIC (C++ enumerator)

 	eprosima::statistics_backend::StatusKind::INVALID (C++ enumerator)

 	eprosima::statistics_backend::StatusKind::LIVELINESS_CHANGED (C++ enumerator)

 	eprosima::statistics_backend::StatusKind::LIVELINESS_LOST (C++ enumerator)

 	eprosima::statistics_backend::StatusKind::PROXY (C++ enumerator)

 	eprosima::statistics_backend::StatusKind::SAMPLE_LOST (C++ enumerator)

 	eprosima::statistics_backend::StatusKind::STATUSES_SIZE (C++ enumerator)

 	eprosima::statistics_backend::StatusLevel (C++ enum)

 	eprosima::statistics_backend::StatusLevel::ERROR_STATUS (C++ enumerator)

 	eprosima::statistics_backend::StatusLevel::OK_STATUS (C++ enumerator)

 	eprosima::statistics_backend::StatusLevel::WARNING_STATUS (C++ enumerator)

 	eprosima::statistics_backend::Timestamp (C++ type)

 	eprosima::statistics_backend::Unsupported (C++ class)

 	eprosima::statistics_backend::Unsupported::Exception (C++ function), [1], [2]

 	eprosima::statistics_backend::Unsupported::operator= (C++ function)

 	eprosima::statistics_backend::Unsupported::Unsupported (C++ function)

Forthcoming Version

Version 0.1.0

This first release includes the following features:

	Starting and stopping monitoring a DDS domain ID

	Keeping track of discovered entities (hosts, users, processes, participants,
topics, data readers, data writers, and locators).

	Listening and recording statistics data related to the discovered entities,
as reported by the Fast DDS statistics module.

	Retrieving the recorded statistics data, preprocessed with the requested statistic
(mean, standard deviation, maximum, minimum, median)

	Persisting the recorded statistics to a file.

	Loading the statistics from a persisted file.

Version 0.10.0

This release includes the following feature:

	Extend method clear_statistics_data to remove internal statistical data previous to a time given.

Version 0.11.0

This release includes the following update:

	Regenerate TypeSupport with Fast DDS-Gen v2.5.1.

This release includes the following bugfix:

	Remove obsolete warning in documentation.
Fast DDS v2.9.0 changed the default behavior by building with FASTDDS_STATISTICS enabled by default.

This release includes the following dependencies update:

	
	Repository

	Old Version

	New Version

	Foonathan Memory Vendor

	eProsima/foonathan_memory_vendor [https://github.com/eProsima/foonathan_memory_vendor]

	v1.3.0 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.0]

	v1.3.1 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1]

	Fast CDR

	eProsima/Fast-CDR [https://github.com/eProsima/Fast-CDR]

	v1.0.27 [https://github.com/eProsima/Fast-CDR/releases/tag/v1.0.27]

	v1.1.0 [https://github.com/eProsima/Fast-CDR/releases/tag/v1.1.0]

	Fast DDS

	eProsima/Fast-DDS [https://github.com/eProsima/Fast-DDS]

	v2.10.1 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.10.1]

	v2.11.0 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.11.0]

	Fast DDS Gen

	eProsima/Fast-DDS-Gen [https://github.com/eProsima/Fast-DDS-Gen]

	v2.4.0 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v2.4.0]

	v2.5.1 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v2.5.1]

	IDL Parser

	eProsima/IDL-Parser [https://github.com/eProsima/IDL-Parser.git]

	v1.5.0 [https://github.com/eProsima/IDL-Parser/releases/tag/v1.5.0]

	v1.6.0 [https://github.com/eProsima/IDL-Parser/releases/tag/v1.6.0]

Version 0.2.0

This minor release is API compatible with the previous minor release, but introduces ABI breaks:

	Methods and attributes have been added on several classes, so indexes of
symbols on dynamic libraries may have changed.

This release adds the following features:

	Support for Windows platforms

	Dumped data can now be loaded to the backend

	Backend can now be reset to a clean state (deleting all the data and monitors)

	StatisticsBackend::get_data implementation for SAMPLE_DATAS and DISCOVERY_TIME sample types

	StatisticsBackend::get_data implementation for zero bins

It also includes the following improvements:

	The participant info now contains all the locators of the participant

	Entities have an alias that can be set by the user to facilitate identification

Some important bugfixes are also included:

	Fixed errors when the same topic name is used on different domains

	Fixed crashes on database queues when database operation fails

Version 0.3.0

This release has the following API breaks:

	StatisticsBackend::dump_database methods now have an additional argument clear.

This release adds the following features:

	Dumping the database can optionally delete the traffic data from the internal data structures
after the dump is completed, in order to reduce memory footprint.

	Support to create monitors on discovery server networks.

	Statistics data related to meta-traffic are now collected under the builtin meta-traffic endpoint
created on each participant.

	Entities removed from the network now have a non-active status.

	Transitions between active and non-active status are notified to the user listeners.

	It is possible to change the domain listener and mask after the monitor is created.

This release includes the following bug fixes and improvements:

	By default, statistics data is received using UDP transport, shared memory is disabled.

	Network latency data now relates to a source participant and a destination locator
(previously a source locator and a destination locator).

	Statistics data can now trigger the discovery of a new locator.

	Improved entity names and aliases to be more user friendly.

	Solved an issue that may cause the internal database to freeze.

	Allow for topics with the same name to be on different domains.

Version 0.4.0

This release has the following API extensions:

	StatisticsBackend::is_metatraffic allows the user to know if a specific topic or endpoint is related to metatraffic
data.

This release adds the following features:

	Add HelloWorld Example.

This release includes the following bug fixes and improvements:

	Return the end of the time interval as the data point’s timestamps instead of the initial one.

	Avoid adding the same locator twice to the database.

	Fix deadlock when accessing the database within a callback implementation.

	Avoid using deprecated namespace.

	Improvements on CI.

Version 0.5.0

This release adds the following improvements:

	Improvements on Windows CI

	Refactor on processing queues to avoid data races with entity creation order

	Update Statistics Module type support

Version 0.6.0

This release adds the following improvement:

	Update statistics type support including physical data in DISCOVERY_TOPIC

Version 0.7.0

This release adds the following feature:

	Possibility of loading Fast DDS Statistics Backend’s DomainParticipant from Fast DDS XML configuration files.

This release adds the following improvements:

	Warn the user the Fast DDS Statistics module needs to be enabled.

	Update documentation regarding locator specification.

	Fix destruction error in the Database’s queue thread.

Version 0.7.1

This release adds the following improvements:

	Update python dependencies for building the documentation

	Re-generate Fast DDS-Gen generated TypeSupport with Fast DDS-Gen v2.2.0

	Example to export ROS 2 statistics to Prometheus

Version 0.8.0

This release includes the following features:

	New API to clear statistic data and remove inactive entities from database.

This release includes the following improvements:

	CI improvements:

	Include address-sanitizer job.

	Flaky tests are run in a specific job.

	Internal implementation improvements:

	Remove database unused collections.

	Smart pointers refactor using unique instead of shared pointers.

	Example:

	Improve example including new API.

This release includes the following bugfixes:

	Memory leaks fixes reported by address-sanitizer.

Version 0.9.0

This release includes the following improvements:

	Regenerate TypeSupport with Fast DDS-Gen v2.4.0.

This release includes the following bugfixes:

	Fix documentation dependencies security vulnerabilities.

	Install fixed gcovr version.

	Fix build issues adding ignored Info statuses.

Version 1.0.0

This release includes the following API extensions:

	StatisticsBackend::get_status returns the entity status level of a given id.

	StatisticsBackend::get_info returns domain participant and endpoint app info.

	StatisticsBackend::get_domain_view_graph returns the domain view graph of a given domain.

	StatisticsBackend::regenerate_domain_graph regenerates the domain view graph of a given domain.

	StatisticsBackend::get_status_data returns an specific status data of a given id.

	Added status attribute for entities.

	Added database domain_view_graph map.

	Added monitor service topic status data storing and processing.

	Retrieve physical information from discovery packets.

	Physical related entities with an empty name are given the name Unknown by default.

This release includes the following dependencies update:

	
	Repository

	Old Version

	New Version

	Foonathan Memory Vendor

	eProsima/foonathan_memory_vendor [https://github.com/eProsima/foonathan_memory_vendor]

	v1.3.1 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1]

	v1.3.1 [https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1]

	Fast CDR

	eProsima/Fast-CDR [https://github.com/eProsima/Fast-CDR]

	v1.1.0 [https://github.com/eProsima/Fast-CDR/releases/tag/v1.1.0]

	v2.1.2 [https://github.com/eProsima/Fast-CDR/releases/tag/v2.1.2]

	Fast DDS

	eProsima/Fast-DDS [https://github.com/eProsima/Fast-DDS]

	v2.11.0 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.11.0]

	v2.13.0 [https://github.com/eProsima/Fast-DDS/releases/tag/v2.13.0]

	Fast DDS Gen

	eProsima/Fast-DDS-Gen [https://github.com/eProsima/Fast-DDS-Gen]

	v2.5.1 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v2.5.1]

	v3.0.0 [https://github.com/eProsima/Fast-DDS-Gen/releases/tag/v3.0.0]

	IDL Parser

	eProsima/IDL-Parser [https://github.com/eProsima/IDL-Parser.git]

	v1.6.0 [https://github.com/eProsima/IDL-Parser/releases/tag/v1.6.0]

	v1.7.2 [https://github.com/eProsima/IDL-Parser/releases/tag/v1.7.2]

Database dumps

nav.xhtml

 Table of Contents

 		
 Description

_static/css/imgs/logo.png

_static/minus.png

_static/plus.png

_static/file.png

_images/logo.png

